在船舶系统中,离心泵在运行时起到了关键性的作用,而其驱动电机可靠运行是泵能够稳定工作的前提,传统PID手动调参方法存在整定时间长、难度大等缺点,很难达到理想的控制结果。针对以上问题,提出一种用混合粒子群算法(HPSO)来优化PID控制器参数的方法,将蝙蝠算法(BA)中随机移动概念引入到粒子群算法(PSO)中,并将其和PSO算法、传统方法进行对比分析,利用Matlab 软件搭建PID控制模型。仿真结果表明,运用HPSO优化的PID控制器能够克服标准PSO算法易陷入局部极值的缺点,可以高效、精确、快速地寻优出PID控制器的最佳参数,并展现出了鲁棒性好、调节时间少、运行相对稳定等优点。
In the marine system, the centrifugal pump plays a key role in operation, and whether the driving motor runs reliably is the premise for the pump to work stably. The traditional PID manual parameter adjustment method has the disadvantages of long setting time and great difficulty, so it is difficult to achieve the ideal control results. To solve the above problems, a method of using hybrid particle swarm optimization (HPSO) to optimize the parameters of PID controller is proposed. The concept of random movement in bat algorithm (BA) is introduced into particle swarm optimization algorithm, which is compared with PSO algorithm and traditional methods, and the PID control model is established by MATLAB software. The simulation results show that the PID controller optimized by HPSO can overcome the disadvantage that the traditional particle swarm optimization (PSO) is easy to fall into local optimization, and can find the best parameters of the PID controller efficiently, accurately and quickly. It shows the advantages of good robustness, less adjustment time and relatively stable operation, and the system can run more stably.
2022,44(18): 134-138 收稿日期:2021-10-08
DOI:10.3404/j.issn.1672-7649.2022.18.027
分类号:TP273
基金项目:吉林省科技发展计划重点研发项目(20200403133SF,20210203109SF)
作者简介:付荣赫(1998-),男,硕士研究生,研究方向为智能优化算法
参考文献:
[1] 王凯. 电气设备在船舶中的应用分析[J]. 科技创新与应 用, 2017(7): 131–132
[2] 宋志鹏, 陈国华. 离心泵电机振动原因分析与处理[J]. 化工管理, 2018(28): 143
[3] ZHOU Jian-xin, ZHAO, SONG Ding-li, et al. PID neural network decoupling control based on improved particle swarm optimization[J]. Machine Tool & Hydraulics, 2018, 46(24): 74–79
[4] 赵广元, 王超. 基于人群搜索算法的直流电机优化设计[J]. 舰船电子工程, 2019, 39(10): 242–246
[5] 李书霞. 改进群智能算法及其在PID控制器参数整定中的应用[D]. 鞍山: 辽宁科技大学, 2016.
[6] 张继荣, 张天. 基于改进粒子群算法的PID控制参数优化[J]. 计算机工程与设计, 2020, 41(4): 1035–1040
[7] 童大鹏, 田野, 任荣社. 船用离心泵典型故障与排除[J]. 中国修船, 2013, 26(5): 48–50
[8] 陈金涛, 辜承林. 基于遗传算法的永磁直流电机优化设计[J]. 微电机(伺服技术), 2006, 4(8): 17−20+77.
[9] 施云. 基于模糊PID控制的直流电机控制算法仿真分析[J]. 电子制作, 2020(13): 6–9
[10] 周斌. 粒子群优化PID的舰船电动机控制系统[J]. 舰船科学技术, 2019, 41(16): 112–114
ZHOU Bin. Ship motor control system based on particle swarm optimization PID[J]. Ship Science and Technology, 2019, 41(16): 112–114
[11] 姬鹏飞, 侯凡博, 杜毅. 基于混合粒子群算法的注塑机电液伺服系统控制研究[J]. 机床与液压, 2020, 48(16): 132–135
JI Peng-fei, HOU Fan-bo, DU Yi. Research on the control of injection molding machine electro-hydraulic servo system based on hybrid particle Swarm optimization[J]. Machine Tool & Hydraulics, 2020, 48(16): 132–135
[12] 吕磊, 章国宝, 黄永明. 基于蝙蝠算法的PID参数整定[J]. 控制工程, 2017, 24(3): 548–553
LV Lei, ZHANG Guo-bao, HUANG Yong-ming. PID parameter tuning based on bat algorithm[J]. Control Engineering, 2017, 24(3): 548–553
[13] 丁芳, 周扬, 吴婷娜, 等. 基于PSO-BA算法的飞机地面空调系统仿真[J]. 中国民航大学学报, 2020, 38(2): 28–32
DING Fang, ZHOU Yang, WU Ting-na, et al. Simulation of aircraft ground air conditioning system based on pso-ba algorithm[J]. Journal of China Civil Aviation University, 2020, 38(2): 28–32
[14] 贺争亮. 基于改进猫群算法的PID参数整定及其在直流 电机控制中应用研究[D]. 南昌: 南昌大学, 2020.