舰艇磁场作为舰艇重要暴露源,是舰艇非声隐身性能的一大研究重点。在舰艇磁防护工作中,为应对舰艇上方的航空磁探测等新型磁威胁,需要对舰艇磁场全方位的空间分布特征进行数学建模。本文针对舰艇垂向非对称结构在舰艇上、下方感应磁场的分布差异,通过数值仿真实验对某潜艇简易模型进行定量分析,并基于舰艇上、下方2个近场平面的磁场数据,以拟合结果均方根误差为目标函数,采用粒子群优化算法(particle swarm optimization, PSO)对系数矩阵进行优化,建立了潜艇的三维磁偶极子阵列模型。定量分析模拟结果表明,在艇模上、下方单倍船长范围内,感应磁场最大相对误差超过5%,采用单个近场平面的测量数据建模将对磁模型换算精度带来显著影响。采用双平面模拟后,将磁偶极子阵列模型深度换算结果与艇模仿真数据进行比较,龙骨上、下方最大相对拟合误差仅为1.14%与2.82%,拟合精度高且可换算深度范围广。本文研究成果可应用于舰艇磁场的高精度建模,并为舰艇磁防护中磁场测量、磁性目标探测与定位等工作提供参考。
As an important source of exposure of ships, the magnetic field of ships is a major research focus of ship's non-acoustic stealth performance. In the work of ship magnetic protection, it is necessary to mathematically model the spatial distribution characteristics of the ship's magnetic field so as to deal with new types of magnetic threats such as aerial magnetic detection above the ship. In this article, quantitative analysis is given for a simple model of a submarine through numerical simulation experiments, taking consideration of the difference in the distribution of the vertical asymmetric structure of the ship's induction magnetic field. Based on the known data on the upper and lower two near-field planes of the ship, and taking the root mean square error of the fitting result as the objective function, a three-dimensional magnetic dipole array using Particle Swarm Optimization (PSO) to optimize the coefficient matrix is proposed. The modelling result shows that the maximum relative error of the induced magnetic field exceeds 5% on the plane above and below the boat model within one ship length, and using of a single near-field plane measurement data modeling will have a significant impact on the conversion accuracy of the magnetic model. After using the double plane modelling, the depth conversion result of the magnetic dipole array model is compared with the simulation data of the submarine model and shows that the maximum relative fitting error above and below the keel is only 1.14% and 2.82%, so that the fitting accuracy is higher and the conversion depth range is wider. This research can be applied to the high-precision modeling of the magnetic field of ships, and provide a reference for magnetic field measurement, detection and positioning of magnetic targets in the magnetic protection of ships.
2022,44(18): 159-164 收稿日期:2021-11-16
DOI:10.3404/j.issn.1672-7649.2022.18.033
分类号:TM153
作者简介:侯希晨(1996-),男,硕士研究生,研究方向为舰艇感应磁而空间特性与消磁优化
参考文献:
[1] HOLMES J J. Modeling a ship's ferromagnetic signatures[J]. Synthesis Lectures on Computational Electromagnetics, 2007, 2(1): 1–75
[2] 王德强, 余强. 舰船磁场数值计算方法发展综述[J]. 舰船科学技术, 2014, 36(3): 1–6
[3] ROSU G, SAMOILESCU G, BALTAG O. Evaluation of a numerical model for ship magnetic signature induced by an external field[C]//2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE). IEEE, 2014: 1-6.
[4] 孙权, 唐劲飞. 潜艇磁场的估算与仿真[J]. 鱼雷技术, 2011, 19(4): 318–320
[5] 杨立健, 刘天华. 基于偶极子方式的舰船磁场仿真技术研究[J]. 舰船电子工程, 2017, 37(6): 60–63
[6] 张朝阳, 虞伟乔. 基于磁偶极子等效的潜艇空间磁场分布[J]. 舰船科学技术, 2013, 35(1): 31–34
[7] ROSU G, SAMOILESCU G, BALTAG O. Assessment of the ellipsoidal shell model for ship magnetic signature[C]//2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE, 2015: 413–416.
[8] MARIN G, SAMOILESCU G, RADU S. Prediction of ship magnetic signatures through semi-empirical methods[C]//The 22nd Edition the NAV. MAR. EDU International Conference. 2011: 31−38.
[9] 郭成豹, 殷琦琦. 舰船磁场磁单极子阵列法建模技术[J]. 物理学报, 2019, 68(11):106–115.
[10] Jakubiuk K, Zimny P, Wołszyn M. Multidipoles model of ship's magnetic field[J]. International Journal of Applied Electromagnetics and Mechanics, 2012, 39(1-4): 183–188
[11] 周峰, 刘卫东, 林轶群. 舰艇磁场磁偶极子阵列数学模型研究[J]. 计算机测量与控制, 2008, 16(10): 1499−1501.
[12] 戴忠华, 周穗华, 单珊. 舰船单磁偶极子模型适用性研究[J]. 水雷战与舰船防护, 2017, 25(4): 10–14
[13] 吕俊伟, 于振涛, 樊利恒, 盖俊峰. 舰船磁场模型适用范围研究[J]. 海军航空工程学院学报, 2012, 27(5): 563–566
[14] 孙晓永, 张琦, 潘孟春. 基于COMSOL Multiphysics的目标磁特性仿真分析[J]. 中国测试, 2017, 43(1): 122–126
Sun X Y, Zhang Q, Pan M C. Simulation analysis of the magnetic properties based on COMSOL Multiphysics[J]. China Measurement & Testing Technology, 2017, 43(1): 122–126
[15] 徐杰, 刘大明, 周国华. 一种基于遗传优化算法的潜艇高空磁场换算方法[J]. 舰船科学技术, 2009(1): 156–159
[16] 刘胜道, 刘大明, 肖昌汉, 等. 基于遗传算法的磁性目标磁模型[J]. 武汉理工大学学报(交通科学与工程版), 2008, 032(6): 1017−1020.
[17] 戴忠华, 周穗华, 单珊. 基于模拟退火算法的舰船磁场高精度建模方法[J]. 电子学报, 2018, 46(6): 1524–1529
[18] 张朝阳, 肖昌汉, 徐杰. 基于微粒群优化算法的舰船磁模型分析[J]. 华中科技大学学报(自然科学版), 2010, 38(11): 124–128
Zhang C Y, Xiao C H, Xu J. Analysis of magnetic model for ships using particle swarm optimization method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(11): 124–128