数字陀螺罗经及船用捷联惯导系统以其结构紧凑、硬件制造成本低、能直接给出航向数值,以及能与现代雷达、ECDIS等航海仪器直接进行IEC61162标准下数据交换而在船舶上得到快速与广泛应用,势必会逐步替代纯机电式陀螺罗经产品。但船用陀螺罗经GB/T系列标准要求船舶在驾驶台两翼及其他必要位置,必须提供刻度盘表示的方位分罗经。此外,大量现役舰船组合操舵仪工作原理仍然以同步式或步进式机电传向为基础,整体更换浪费严重,成本巨大。针对以上问题,设计一套数字驱动机电传向黑箱系统,黑箱包含自整角机式分罗经数字转换与反馈,主分罗经偏差比较,执行电机与自整角机轴连,基于云台协议的方位传向驱动,主分罗经航向虚拟仪表显示等。实验室测试验证结果表明,偏差反应灵敏度<0.3°,分罗经数值分辨率< 0.3°,利用本黑箱系统设计,能充分利用船舶现有机电分罗经及操舵装置,解决现代罗经产品迭代与机电传向的兼容性问题。
Because of its compact structure, low hardware cost and directly value giving, and easily data exchanging with modern radar, ECDIS and other marine instrument sunder IEC61162 standard, digital gyrocompass and similar products are rapidly and widely used in ships.However, the GB / T series standard requires that the ship must provide the azimuth measuring compass repeater at the two wings of the bridge and other necessary positions, Other wise, the working principle of a large number of steering instruments of existing ship is still based on synchronous or stepping electric machinery transmission, the overall replacement waste is serious and the cost is huge. To solve the above problems. A set of digital drive electromechanical transmission black box system is designed,It includes the digital conversion of main gyro compass and repeater feedback, the deviation comparison of the main gyro compass and the repeater, the connection between the executive motor and the axis of the self-adjusting machine, the azimuth transmission drive based on the PTZ protocol, the virtual instrument display and recording of the course,etc.The test results show that the deviation response sensitivity is less than 0.3°, and the accuracy is less than 0.3°. It can solve the compatibility between the iteration of modern compass products and electromechanical transmission.
2022,44(18): 169-172 收稿日期:2022-06-02
DOI:10.3404/j.issn.1672-7649.2022.18.035
分类号:U663
基金项目:江苏交通运输职教研究课题(2011-C11);江苏省高校优秀科技创新团队资助计划;南通市科技计划项目(MSZ20190,MSZ20073);江苏省高校大学生创新创业训练计划项目(202112703014Y)
作者简介:吴炜(1981-),女,硕士,讲师,主要从事交通运输工程仪器仪表研究
参考文献:
[1] 夏永明, 石静. MCU和CPLD组成的船用仪表显示接口[J]. 上海海事大学学报, 2008(2): 30–34.
XIA Yong-ming, SHI Jing. Display interface for marine instrument based on MCU and CPLD[J]. Journal of Shanghai Maritime University, 2008(2): 30–34.
[2] GB/T 11877-2010, 船用陀螺罗经组合操舵仪[S].
GB/T 11877-2010, Marine autopilot with gyro compass[S].
[3] 成郑, 王平. 基于CAN总线的船舶导航通信系统的设计[J]. 现代工业经济和信息化, 2022, 12(2): 74–75+78
CHENG Zheng, WANG Ping. Design of ship navigation communication system based on CAN bus[J]. Modern Industrial Economy and Informationization, 2022, 12(2): 74–75+78
[4] 谯力. 安许茨自动舵参数设置及工作模式的选择和转换[J]. 航海技术, 2007(1): 34–36
Qiao Li. Parameter setting and working mode selection and conversion of Anschutz automatic rudder[J]. Marine Technology, 2007(1): 34–36
[5] 冯爱国, 吴炜. 传感网式罗经航向数字复示与方位测量系统设计[J]. 上海海事大学学报, 2015, 36(4): 52–56+67
FENG Ai-guo, WU Wei. Design of compass digital course repeater and azimuth measurement system based on sensor network[J]. Journal of Shanghai Maritime University, 2015, 36(4): 52–56+67
[6] 李向阳, 黄健, 彭学亮, 等. 电罗经数字化转换器的研制[J]. 电子技术应用, 2009, 35(8): 93–96
LI Xiang-yang, HUANG Jian, PENG Xue-liang, et al. Development of electric gyro compass digitized converter[J]. Application of Electronic Technique, 2009, 35(8): 93–96
[7] 晏柳, 柯亚龙, 张燃, 等. 基于射频识别RFID技术与SQL数据库的电镀生产线控制系统[J]. 广州化工, 2021, 49(11): 112–114
YAN Liu, KE Ya-long, ZHANG Ran, et al. Electroplating system based on radio frequency identification RFID technology and SQL database[J]. Guangzhou Chemical Industry, 2021, 49(11): 112–114
[8] CHEN J D, BENESTY J, HUANG Y T. Performance of GCC and AMDF-based time delay estimation in pratical reverberant environments[J]. EURASIP Joumal on Applied Signal Processing, 2005(1): 25–36
[9] 顾明星, 刘卫, 胡媛, 等. 陀螺罗经和计程仪辅助的GNSS/SINS松组合导航系统[J]. 航天控制, 2021, 39(1): 8–14
GU Ming-xing, LIU Wei, HU Yuan, et al. A loosely coupled GNSS/SINS integrated navigation system assisted by gyrocompass and vialog[J]. Aerospace Control, 2021, 39(1): 8–14