火箭助飞鱼雷会遭受入水带来的恶劣跨介质力学环境,本文基于均质平衡流和VOF多相流理论建立气-液-汽三相耦合流动数学模型,并通过嵌套网格技术,实现多相流与6-DOF结构体动力学耦合的高速入水分析,研究气/液相可压缩性对结构体高速入水载荷的影响,并进一步分析不同入水速度(100~300 m/s)和不同横升角(10°,40°)对应的流体可压缩性影响,从而对可压缩性的影响行较全面的分析,研究结果有助于清晰认识高速入水过程流体可压缩性的作用机理,可用于指导相关的降载头型及缩比试验等设计。
Rocket-assisted torpedoes suffer from the severe trans-medium mechanical environment caused by water entry. This article establishes a mathematical model of gas-liquid-vapor three-phase coupled flow based on the homogeneous equilibrium flow and the VOF multiphase flow. The overset grid technology is adopted to realize the coupling analysis of water entry between the multiphase flow and the 6-DOF body dynamics. The effects of gas compressibility and liquid compressibility on the high-speed water entry loads of body are investigated. Further, the corresponding effects of different water entry speeds (100~300 m/s) and deadrise angles (10° and 40°) are analyzed comprehensively. The results can help readers clearly understand the mechanism of fluid compressibility action during the high-speed water entry, which provides a helpful guidance for the relevant designs of load-reduced nose and scaling test.
2022,44(19): 6-11 收稿日期:2022-01-30
DOI:10.3404/j.issn.1672-7649.2022.19.002
分类号:J630
基金项目:国防科技重点实验室基金资助项目(JCKY20207CD01)
作者简介:冯鹏辉(1990-),男,博士,研究方向为跨介质力学
参考文献:
[1] 徐宣志, 欧阳吕伟, 严忠汉. 鱼雷力学[M]. 北京: 国防工业出版社, 1992.
[2] KARMAN T Von. The impact on seaplane floats during landing[R/OL]. National Advisory Committee for Aeronautics, 1929.
[3] WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z Angew Math Mech, 1932, 12(4): 193–215
[4] WANG S, SOARES C. Effects of compressibility, three-dimensionality and air cavity on a free-falling wedge cylinder[J]. Ocean Engineering, 2020, 217: 107589
[5] SHI H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry[J]. Journal of Fluids Engineering, 2000, 122(4): 806–810
[6] TRUSCOTT TT. Cavity dynamics of water entry for spheres and ballistic projectiles[D]. Massachusetts: Massachusetts Institute of Technology, 2009.
[7] 黄闯, 党建军, 李代金, 等. 跨声速运动对射弹阻力及空化特性的影响[J]. 兵工学报, 2016, 37(8): 1482–1488
HUANG Chuang, DANG Jianjun, LI Daijin, et al. Effect of transonic flight on drag and cavitation characteristics of projectile[J]. Acta Armamentarii, 2016, 37(8): 1482–1488
[8] 黄闯, 罗凯, 白杰, 等. 液体可压缩性对超空化流动的影响[J]. 上海交通大学学报, 2016, 50(8): 1241–1245
HUANG Chuang, LUO Kai, BAI Jie, et al. Effect of liquid compressibility on supercavitation flow[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1241–1245
[9] 洪尧, 王本龙, 刘桦. 二维高速入水物体砰击载荷数值研究[C]//第九届全国流体力学学术会议, 南京, 2016.
Hong Yao, Wang Benlong, Liu Hua. Numerical study of slamming load during the high-speed water entry of two-dimension body[C]//The 9th National Conference on Fluid Mechanics, Nanjing, China, 2016.
[10] 张凌新, 褚学森, 邵雪明. 高速物体入水过程的可压缩数值计算方法研究[C]//第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会, 长春, 2017.
ZHANG Lingxin, CHU Xuesen, SHAO Xueming. Investigation of compressible numerical computation method for high-speed water entry process[C]//The 14th National Hydrodynamics Conference and the 28th National Hydrodynamics Workshop, Changchun, China, 2017.
[11] 李达钦. 高速航行体可压缩超空泡流动数值计算[D]. 北京: 北京理工大学, 2016.
[12] Li D, Zhang J, Zhang M, et al. Experimental study on water entry of spheres with different surface wettability[J]. Ocean Engineering, 2019, 187: 106123
[13] 陈晨, 魏英杰, 王聪, 等. 射弹跨声速入水初期阶段多相流场特性数值研究[J]. 振动与冲击, 2019, 38(6): 46–61
CHEN Chen, WEI Yingjie, WANG Cong, et al. Numerical study on the multiphase flow characteristics durging the initial stage of transonic water entry of projectile[J]. Journal of Vibration and Shock, 2019, 38(6): 46–61
[14] 曹雪洁, 胡俊, 于勇. 液体可压缩性对高速射弹超空泡流的影响[J]. 兵工学报, 2020, 41(S1): 72–78
CAO Xuejie, HU Jun, YU Yong. Effect of liquid compressibility on supercavitation flow of high-speed projectile[J]. Acta Armamentarii, 2020, 41(S1): 72–78
[15] 李国良, 尤天庆, 孔德才, 等. 旋成体高速入水可压缩性影响研究[J]. 兵工学报, 2020, 41(4): 720–729
LI Guoliang, YOU Tianqing, KONG Decai, et al. Effect of compressibility on high-speed water entry of revolution body[J]. Acta Armamentarii, 2020, 41(4): 720–729
[16] ALAOUIL AEM, NêME A, TASSIN A, et al. Experimental study of coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds[J]. Applied Ocean Research, 2012, 37: 183–197
[17] ELHIMER M, JACQUES N, El MALKI ALAOUI A, et al. The influence of aeration and compressibility on slamming loads during cone water entry[J]. Journal of Fluids and Structures, 2017, 70: 24–46