船桥碰撞下船体结构很容易损伤,为控制灾难性程度,船舶设计时进行船体结构强度及动力响应测试十分必要,建立船舶和桥梁的有限元模型。针对模型施加荷载,设计6种工况,动态模拟船桥碰撞过程。分析碰撞过程中的船体结构强度及动力响应情况。结果表明:根据最大相对变形和极限强度,将船体强度从低到高排序,得出船舶行驶速度越快、撞击越正面,角度越大,产生的破坏力越强。碰撞力变化特征:开始迅速上升,出现小幅度的减小,碰撞力再次上升并且达到顶峰,碰撞力迅速下降,船舶的动能逐渐减少,内能逐渐升高;行驶速度越快、撞击越正面,角度越大,动能越小,内能越大。撞深整体呈现先升高再降低最后维持平稳的变化特征;船舶行驶速度越快、撞击越正面,角度越大,撞深越大。
Under the collision of ship bridge, the hull structure is easily damaged, which seriously threatens the safety of life and property. it is necessary to test the strength and dynamic response of the hull structure during ship design. Establish the finite element model of ship and bridge. According to the model implementation load and ship collision description equation, six working conditions are designed to dynamically simulate the ship bridge collision process. The strength and dynamic response of hull structure during collision are analyzed. The results show that according to the maximum relative deformation and ultimate strength, the strength of the hull is sorted. It is concluded that the faster the speed of the ship is, the more frontal the impact is, and the greater the angle is, the stronger the damage is. Change characteristics of collision force: the collision force rises rapidly and decreases slightly. The collision force rises again and reaches the peak. The collision force drops rapidly. The kinetic energy of the ship gradually decreases and the internal energy gradually increases. The faster the driving speed, the more frontal the impact, the greater the angle, the smaller the kinetic energy, and the greater the internal energy. The impact depth as a whole shows the characteristics of first increasing, then decreasing, and finally maintaining a stable change. The faster the ship travels, the more frontal the collision is, the greater the angle is, and the deeper the collision is.
2022,44(19): 18-21 收稿日期:2022-04-29
DOI:10.3404/j.issn.1672-7649.2022.19.004
分类号:TP125.63
基金项目:辽宁省教育科学“十三五”规划立项课题(JG17EB035)
作者简介:付明春(1971-),男,硕士,副教授,研究方向为工程力学
参考文献:
[1] 王贵春, 吉喆, 李武生, 等. 考虑桩土作用的船桥碰撞动力性能及影响因素分析[J]. 桥梁建设, 2021, 51(4): 17–24
[2] 曹明, 张南, 沈强, 等. 船桥撞击力影响因素有限元仿真模拟分析[J]. 防灾减灾工程学报, 2021, 41(3): 603–611
[3] 戴志伟, 方海, 刘伟庆, 等. 考虑墩顶约束作用的桥墩船撞力学模型及其响应[J]. 南京工业大学学报(自然科学版), 2020, 42(3): 366–372
[4] 潘晋, 黄义飞, 夏天, 等. 基于AIS数据的桥梁防船撞结构冲击响应分析[J]. 桥梁建设, 2020, 50(1): 32–37
[5] 张爱锋, 刘少康, 姚苗苗, 等. 船桥碰撞结构损伤及船撞力影响因素分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(3): 121–127
[6] 邱吉廷, 李文华, 郑文青. VLGC舱段结构强度有限元分析方法[J]. 船海工程, 2020, 49(1): 61–66+71
[7] 王靖, 张春涛, 崔铭超. 80000 m~3大型养殖工船船体结构屈服强度分析[J]. 船舶工程, 2021, 43(12): 63–68
[8] 甄春博, 周清婉, 王晓鹏, 等. 玻璃钢双体船结构强度直接计算研究[J]. 复合材料科学与工程, 2022(4): 50–55
[9] 刘俊杰, 丁震, 马琳, 等. 总纵弯曲下舰船上层建筑结构强度钢模试验[J]. 中国舰船研究, 2022, 17(2): 135–141
[10] 陈志雄, 臧志鹏, 王琮, 等. 有限水深多载荷作用下细长圆管水动力响应试验研究[J]. 船舶力学, 2022, 26(8): 1160–1170