为促进螺旋桨高效优化设计,结合基于NFFD技术、多输出高斯近似模型以及NSGA-Ⅱ多目标优化算法,构建一套包括螺旋桨变形重构—水动力性能快速预测—多目标优化的螺旋桨高效自动优化方法。首先,基于NFFD技术、以螺旋桨的几何参数为设计变量,实现螺旋桨三维模型的变形与重构;采用有限元数值仿真得出样本螺旋桨的水动力性能,并基于多输出高斯近似理论建立螺旋桨几何参数和水动力性能之间的近似模型。最后,结合高斯近似模型和NSGA-Ⅱ算法对KP505桨进行了多目标优化设计,验证方法应用于螺旋桨优化设计的可行性。结果表明,该方法实现了对KP505桨扭矩系数降低3.3%、效率提高2.6%的多目标优化,验证了该方法应用于螺旋桨优化设计的可行性。
In order to promote the efficient and optimal design of the propeller, combined with the NFFD technology, the multi-output Gaussian approximation model and the NSGA-II multi-objective optimization algorithm, a set of propeller high-efficiency propellers including propeller deformation reconstruction - rapid prediction of hydrodynamic performance - multi-objective optimization was constructed. Automatic optimization method. Firstly, based on NFFD technology, the geometric parameters of the propeller are used as design variables to realize the deformation and reconstruction of the three-dimensional model of the propeller; secondly, the hydrodynamic performance of the sample propeller is obtained by using finite element numerical simulation, and the propeller is established based on the multi-output Gaussian approximation theory. The approximate model between geometric parameters and hydrodynamic performance; finally, combined with Gaussian approximate model and NSGA-Ⅱ algorithm, the multi-objective optimization design of KP505 propeller is carried out, and the feasibility of applying the method to the optimal design of propeller is verified. The results show that the method achieves the multi-objective optimization of reducing the torque coefficient of KP505 propeller by 3.3% and increasing the efficiency by 2.6%, which verifies the feasibility of the method applied to the optimal design of the propeller.
2022,44(19): 46-51 收稿日期:2022-03-04
DOI:10.3404/j.issn.1672-7649.2022.19.010
分类号:U662.2
基金项目:国家重点研发计划战略性国际科技创新合作重点专项 (2016YFE0202700)
作者简介:刘旭(1980-),男,副教授,研究方向为船舶与海洋工程流体性能
参考文献:
[1] 韩用波, 董郑庆, 吕江, 等. 优化理论在螺旋桨水动力设计中的应用[J]. 中国造船, 2019, 60(1): 52–59
HAN Yongbo, DONG Zhengqing, LV Jiang, et al. Application of optimization theory in propeller hydrodynamic design[J]. China Shipbuilding, 2019, 60(1): 52–59
[2] 马丹萍, 李胜忠, 赵峰. 基于FFD几何变形方法的螺旋桨水动性能优化设计[C]//年中国造船工程学会优秀学术论文集, 2017, 39–47.
MA Danping, LI Shengzhong, ZHAO Feng. Optimal design of propeller hydrodynamic performance based on FFD geometric deformation method [C]//Outstanding Academic Papers of Chinese Society of Shipbuilding Engineering, 2017, 39–47.
[3] RAMIN T, KARI M. Hydrodynamic optimization of marine-propeller using gradient and non-gradient-based algorithms[J]. Acta Poly technical Hungarica, 2013(10): 221–237
[4] FLORIAN V, RICKARD J, RICKARD E B. On surrogate mehods in propeller optimization[J]. Ocean Engineering, 2014: 214–227
[5] 叶礼裕, 王超, 孙文林, 等. 近似模型方法在螺旋桨优化设计中的应用[J]. 上海交通大学学报, 2016, 50(8): 1173–1179
[6] 王超, 韩康, 孙聪, 等. 船用螺旋桨优化设计与参数分析[J]. 华中科技大学学报(自然科学版), 2020, 48(4): 97–102
[7] SEDERBERG T W , PARRY S R. Free-form deformation of solid geometric models[C]// Proceedings of the 13 thannual conference on Computer Graphics and Interactive Techniques, 1986, 1151–1160.
[8] LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994(6): 59–65
[9] NOBLE R A,CLAPWORTHY G J. Direct manipulation of surfaces using NURBS-based free-form deformations[C]// IEEE International Conference on Information Visualization, 1999, 1230–1239.
[10] 张人会, 张书玮, 杨军虎, 等. 基于自由曲面变形方法的离心泵三维[J]. 工程热物理学报, 2018, 39(1): 98–103
[11] 李冬琴, 李国焕, 戴晶晶, 等. 基于NFFD算法的船体几何变形技术[J]. 船舶工程, 2018, 40(6): 17–22
[12] WU J W, LIU X Y, WAN D C. Multi-objective Hydrodynamic Optimization of Ship Hull Based on Approximation Model [C]//26th International Ocean and Polar Engineering Conference. 2016.
[13] 马明生, 唐静, 李彬, 等. NFFD控制点分布对气动外形优化的影响[J]. 北京航空航天大学学报, 2016, 42(3): 1–9
MA Mingsheng, TANG Jing, LI Bin, et al. Influence of NFFD control point distribution on aerodynamic shape optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 1–9
[14] 唐静, 邓有奇. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015, 36(5): 1480–1490
TANG Jing, DENG Youqi. Parameterization and mesh deformation technology in aerodynamic optimization of flying wings[J]. Chinese Journal of Aeronautics and Astronautics, 2015, 36(5): 1480–1490
[15] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2013.
[16] CHOI B K, YOO W S, LEE C S. Matrix representation for NURBS curves and B-spline curves[J]. Computer aided Design, 1990, 22(4): 235–240
[17] REZA T M, MOZHGAN A, AZAR S, B. Solvinga multi-objective job shop scheduling problem with sequence-dependent setup times by a Paretoarchive PSO combined with genetic operators and VNS[J]. The International Journal of Advanced Manufacturing Technology volume, 2011, 53: 733–750
[18] 高亮德. 基于多输出高斯过程回归的离心泵叶轮优化设计研究[D]. 兰州: 兰州理工大学, 2021.
[19] БурнаевЕ. В, ЗайцевА. А. Суррогатноемоделированиеразноточныхданныхвслучаевыборокбольшогоразмера[J]. Информационныепроцессы. 2015, 15: 97–109.
[20] LIU X, ZHU Q, LU H. Modeling Multi response surfaces for airfoil design with multiple-output-Gaussian-process regression[J]. Journal of Aircraft, 2014, 51(3): 740–747
[21] ZHANG R, ZHAO X. Inverse method of centrifugal pump blade based on Gaussian process regression[J]. Mathematical Problems in Engineering, 2020: 4605625
[22] 吴宽展, 刘学军, 吕宏强. 基于多输出高斯过程的超临界翼型优化[J]. 空气动力学学报, 2015, 33(6): 728–732
WU Kuanzhan, LIU Xuejun, LV Hongqiang. Optimization of supercritical airfoil based on multi-output Gaussian process[J]. Journal of Aerodynamics, 2015, 33(6): 728–732
[23] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197