船舶斜航时,斜向流场将改变船后桨-舵系统的流场条件,从而影响到螺旋桨和推进性能和舵的操纵效能。本文基于计算流体力学(CFD)理论,以KP458螺旋桨和NACA0018舵为研究对象,通过求解RANS方程对斜流中的桨-舵系统进行数值模拟研究。通过计算螺旋桨和舵的敞水性能曲线,验证了数值方法及网格划分的合理性。考虑流场速度、斜流角以及舵角等因素,对螺旋桨水动力特性的变化和桨后涡演变进行数值分析。研究表明:随着斜流角的增大,螺旋桨的推力、转矩,横向力均有所增大,横向力与斜流角之间呈线性相关,推力及扭矩在高流速下与斜流角呈指数大于1的指数级变化关系;斜流中舵角的存在对横向力有减小作用;桨后涡的偏移角度随斜流角的增大而增大,左舷梢涡、随边涡与毂涡逐渐发生融合,而部分脱离的右舷梢涡逐渐向左舷扩散。
When the ship is sailing at an oblique angle, the oblique flow field will change the flow field conditions of the propeller-rudder system behind the ship, thus affecting the propeller and propulsion performance and the steering efficiency of the rudder. Based on the theory of computational fluid dynamics (CFD), this paper takes KP458 propeller and NACA0018 rudder as research objects, and numerically simulates the propeller-rudder system in oblique flow by solving RANS equation. Firstly, the rationality of numerical method and grid division is verified by calculating the open water performance curves of propeller and rudder. Then, the variation of the propeller hydrodynamic characteristics and the evolution of the post-propeller vortex are numerically analyzed by considering the flow field velocity, oblique flow angle and rudder angle. The results show that with the increase of the oblique flow angle, the thrust, torque and lateral force of the propeller all increase, and there is a linear correlation between the lateral force and the oblique flow angle, and the relationship between the thrust and torque and the oblique flow angle is exponentially greater than 1 at high flow rate. The existence of rudder angle in oblique flow can reduce the lateral force. The deviation angle of the trailing vortex increases with the increase of oblique flow angle, and the port tip vortex, trailing vortex and hub vortex gradually merge, while the partially separated starboard tip vortex gradually diffuses to the port.
2022,44(19): 52-58 收稿日期:2022-04-11
DOI:10.3404/j.issn.1672-7649.2022.19.011
分类号:U661.1
基金项目:国家重点研发计划(No. 2018YFB1600400)
作者简介:李浩然(1997 – ),男,硕士研究生,研究方向为船舶水动力数值计算
参考文献:
[1] MOLLAND A F, TURNOCK S R. The design and construction of model ship propeller blades in hybrid composite materials[J]. Composites Manufacturing, 1991, 2(1): 39–47
[2] MOLLAND A F , TURNOCK S R , SMITHWICK J . Design studies of the manoeuvring performance of rudder-propeller systems[M]. Elsevier, 1998.
[3] MOLLAND A F, TURNOCK S R. A propeller thrust and torque dynamometer for wind tunnel models[J]. Strain, 2010, 38(1): 3–10
[4] HE L, KINNAS S A. Numerical simulation of unsteady propeller/rudder interaction[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(6): 677–692
[5] 何苗, 黄胜, 王超, 常欣. 桨舵系统非定常水动力性能预报方法研究[J]. 华中科技大学学报(自然科学版), 2011, 39(10): 41–45
HE Miao, HUANG Sheng, WANG Chao, et al. Research on the prediction method of non-constant hydrodynamic performance of paddle and rudder system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(10): 41–45
[6] BADOE C E, PHILLIPS A B, TURNOCK S R. Influence of drift angle on the computation of hull–propeller–rudder interaction[J]. Ocean Engineering, 2015, 103(15): 64–77
[7] KRASILNIKOV V, PONKRATOV D, CREPIER P. A numerical study on the characteristics of the system propeller and rudder at low speed operation[C]//Second International Symposium on Marine Propulsors. 2011, (2): 12.
[8] SUN S, WANG C, GUO C, et al. Numerical study of scale effect on the wake dynamics of a propeller[J]. Ocean Engineering, 2020, 196(15): 1–14
[9] 王超, 黄胜, 常欣, 郭春雨. 基于滑移网格与RNG k-ε湍流模型的桨舵干扰性能研究[J]. 船舶力学, 2011, 15(7): 715–721
WANG Chao, HUANG Sheng, CHANG Xin, et al. Study of propeller–rudder interference performance based on slip grid and RNG k-ε turbulence model[J]. Ship Mechanics, 2011, 15(7): 715–721
[10] 张祎. 基于CFD桨舵组合节能装置的水动力性能研究[D]. 大连理工大学, 2020.
[11] LUNGU A. Hydrodynamic loads and wake dynamics of a propeller working in oblique flow[J]. IOP Conference Series: Materials Science and Engineering, 2020, 916(1).
[12] GUILMINEAU E, DENG G B , LEROYER A, et al. Numerical simulations for the wake prediction of a marine propeller in straight-ahead flow and oblique flow[J]. Journal of Fluids Engineering, 2018, 140(2).
[13] HU Jian, ZHANG Wei-peng, GUO Hang, et al. Numerical simulation of propeller wake vortex–rudder interaction in oblique flows[J]. Ships and Offshore Structures, 2020: 1–12
[14] http://airfoiltools.com [EB/OL]./polar/details?polar=xf-naca0018-il-1000000-n5.
[15] http://www.simman2019 [EB/OL].kr/contents/KVLCC2.php.
[16] 冀楠, 杨春, 万德成, 等. 限制水域内船后螺旋桨梢涡特性研究[J]. 水动力学研究与进展(A辑), 2021, 36(2): 153–162
JI Nan, YANG Chun, WAN De-cheng, et al. Study of propeller tip vortex characteristics behind a ship in restricted waters[J]. Hydrodynamics Research and Progress (Series A), 2021, 36(2): 153–162