复合材料在实际应用中不可避免受到物体冲击产生损伤,因此其在冲击损伤后的剩余承载力是结构安全的重点问题。本文以复合壁板结构为研究对象,考虑冲击损伤影响,通过实尺寸模型压缩试验,对比分析不同铺层复合材料壁板的剩余压缩强度,探究冲击损伤、铺层方式等对复合材料壁板剩余压缩强度的影响。通过试验结果分析可知,在面内压缩载荷作用下,不同铺层方式的复合材料壁板,冲击损伤造成结构剩余压缩强度下降高达26.38%。研究结果可为复合材料壁板的设计和安全评估提供参考。
It is inevitable to be damaged by the impact of objects in service, so the residual bearing capacity of composite materials after impact damage is the key issue of structural safety. In this paper, the composite structure of a bulkhead panel is taken as the research object. Considering the impact damage, the residual compression strength of different laminated composite panels is compared and analyzed through the full-size model compression test and the influence of impact damage and lamination mode on the residual compression strength of composite materials is explored. According to the analysis of the test results, under the in-plane compression load, the impact damage of the composite panels with different lay-up modes will reduce the residual compressive strength of the structure up to 26.38%. The research results can provide reference for the design and safety evaluation of composite panels.
2022,44(19): 59-62 收稿日期:2021-08-30
DOI:10.3404/j.issn.1672-7649.2022.19.012
分类号:T833
基金项目:国家自然科学基金青年基金资助项目(52001145);江苏省高校自然科学研究重大项目(17KJA580002);江苏省高校重点实验室开放研究基金资助项目
作者简介:赵鑫(1981-),男,研究员级高级工程师,主要从事铝合金及复合材料结构强度设计
参考文献:
[1] 韦兴宇, 熊健, 王杰, 等. 纤维增强复合材料蜂窝结构的研究进展[J]. 中国科学:技术科学, 2020(8): 1123–1124
[2] 陈涛. 缝合复合材料加筋板受冲击损伤后剩余压缩强度研究[D]. 南京: 南京航空航天大学, 2016.
[3] 孙子恒, 王继辉, 倪爱清, 等. 不同铺层复合材料夹芯结构低速冲击与冲击后剩余强度研究[J]. 复合材料科学与工程, 2020(11): 102–111
[4] LIU Da, BAI Rui-xiang, LEI Zhen-kun, et al. Experimental and numerical study on compression-after-impact behavior of compo- site panels with foam-filled hat-stiffener[J]. Ocean Engineering, 2020, 198: 106991
[5] Mathilde Jean-St-Laurent, Marie-Laure Dano, Marie-Josée Potvin. Compression after impact behavior of carbon/epoxy composite sandwich panels with Nomex honeycomb core subjected to low velocity impacts at extreme cold temperatures[J]. Composite Structures, 2021, 261: 113516
[6] LUV V, ANDREW J J, SRINIVASAN M S, et al. Compression after high-velocity impact behavior of pseudo- elastic shape memory alloy embedded glass/ epoxy composite laminates[J]. Composite Structures, 2021, 259: 113519
[7] 黄骁, 王进, 韩涛, 等. 复合材料层板冲击后压缩强度经验预测公式[J]. 复合材料学报, 2018(5): 1158–1165
[8] 盛鸣剑, 陈普会, 钱一彬. 一种复材层合板低速冲击后压缩强度估算方法[J]. 上海交通大学学报, 2019(10): 1182–1186
[9] OUYANG Tian, BAO Rui, SUN Wei, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin- Walled Structures, 2020, 148: 106588
[10] LI Wei-ping, NIE Hong. Predicting post-impact compression strength of compo- site structures using the inverse method[J]. Composite Structures, 2020, 245: 112348
[11] KUPSKI J, Freitas S T, Zarouchas D, et al. Composite layup effect on the failure mechanism of single lap bonded joints [J], Composite Structures, 2019, 217: 14−26.
[12] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1): 121–132
[13] L. Francesconi, F Aymerich. Effect of Z-pinning on the impact resistance of compo- site laminates with different layups [J]. Composites Part A. 2018, 114: 136-148.
[14] Zhenyu Wu, Lin Shi, Xiaoying Cheng, et al. Transverse impact behavior and residual axial compression characteristics of braided composite tubes: Experimental and numerical study[J]. International Journal of Impact Engineering, 2020, 142: 103578