为了提高焊接接头性能,优化焊接工艺参数,本文在热弹塑性力学理论基础上,建立5052铝合金平板对接的焊接残余应力三维数值计算模型,开展MIG焊接对残余应力分布影响特征分析。结果显示,焊接接头处较大的纵向铝合金焊接残余应力,是由于冷却过程中焊缝纵向收缩导致的。纵向残余应力在靠近焊缝中心线位置以拉应力为主,在焊缝中心熔合线及热影响区域的两侧对称分布,随着距离焊缝线逐渐增大,以纵向残余压应力为主。在焊缝中心线处等效Mises应力达到最大值,且向两侧逐渐递减,热影响区以外区域残余应力数值极小,可以忽略。最后为了验证模拟结果的准确性,使用超声无损检测对焊接接头残余应力的大小及方向进行验证,结果与数值模拟结果基本一致且相同区域内焊接残余应力分布情况相同。
In order to improve the welding joint performance, optimization of welding process parameters, based on thermal elastic-plastic mechanics theory, this paper established the 5052 aluminum alloy plate butt welding residual stress of the three dimensional numerical model, and carry out analysis of characteristics of MIG welding on the residual stress distribution influence. Results show that the welding joint have larger longitudinal aluminum alloy welding residual stress, which is due to the cooling process, the weld longitudinal contraction. Longitudinal residual stress near the weld centerline with tensile stress is given priority to, in the center of the weld fusion line and heat affected zone of bilateral symmetry distribution, gradually increase with distance weld line, give priority to with longitudinal residual compressive stress. In equivalent attain to the maximum Mises stress of the weld centerline, and gradually decreasing in both sides, heat affected zone outside minimal residual stress value, can be ignored. Finally in order to verify the accuracy of the simulation results, the use of ultrasonic nondestructive testing for residual stress of welded joint of the size and direction for validation, verified by test results and the numerical simulation results are basically identical and distribution of welding residual stress in the same area.
2022,44(19): 63-68 收稿日期:2022-04-07
DOI:10.3404/j.issn.1672-7649.2022.19.013
分类号:U663
基金项目:广东省重点领域研发计划资助项目(2020B1111500001-04);江苏省绿色船舶开放基金资助项目(2019Z02)
作者简介:秦闯(1993-),男,硕士,助理实验师,研究方向为船舶结构
参考文献:
[1] 谢光能. 铝合金在船舶和海洋工程中的有效应用[J]. 船舶物资与市场, 2019(1): 49–50.
[2] 陈和. 铝合金船舶建造中的工艺特点初探[J]. 船舶物资与市场, 2020(6): 34–35.
[3] Shanghai Aircraft Design, Research Institute. Research on Structural design of aluminum components for large aircraft based on additive manufacturing technology[J]. Journal of Physics: Conference Series, 1965(1): 2021.
[4] ZENG Yi-dan, HE Li-tong, ZHANG Jin. Numerical simulation of casting deformation and stress of A356 aluminum alloy thin-walled frame casting[J]. Materials Science Forum, 2021, 1033: 24–30.
[5] BALAKRISHNAN J, VASILEIOU A N, FRANCIS JA, et al. Residual stress distributions in arc, laserand electron-beam welds in 30 mm thick SA508 steel: A cross-process comparison[J]. International Jounalof Pressure Vessels and Piping, 2018, 162: 59–70
[6] 李琴, 王于豪, 丁雅萍, 等. 焊接工艺参数对Q345钢平板焊接残余应力的影响[J]. 材料科学与工艺, 2020, 28(6): 80–87
Ll Qin, WANG Yuhao, DING Yaping, et al. Hlfect of welding parameters on residual stress of 0345 steel plate weMding[J]. Materials Science and Technology, 2020, 28(6): 80–87
[7] XIN Wu. On residual stress analysis and microstructural evolution for stainless steel type 304 spent nuclear fuel canisters weld joint: numerical and experimental studies. [J]Journal of Nuclear Materials, 2020, 534: 152131.
[8] 李良碧, 万雁翔. 高强度钢结构焊接残余应力的数值计算[J]. 焊接技术, 2014(1): 5–10
LI Liang-bi, WAN Yan-xiang. High strength steel structure welding residual stress of numerical calculation[J]. Journal of Welding Technology, 2014(1): 5–10
[9] 逯世杰, 郑乔, 张超华, 等. 不同有限元软件对Q390钢厚板T型接头焊接残余应力和变形预测精度与计算效率的比较[J]. 机械工程学报, 2019, 55(6): 11–12
LU Shi-jie, ZHENG Qiao, ZHANG Chao-hua, et al. A comparative studyon computational accuracy and efficiency of welding residualstresses and deformation in a Q390 steel thick plate T joint amongthree kinds of different FEM software[J]. Journal of Mechanical Engineering, 2019, 55(6): 11–12
[10] 孙文婷, 万正权. 对接焊残余应力的有限元分析[J]. 船舶力学, 2007(1): 94–101
SUN Wen-ting, WAN Zheng-quan. Butt welding residual stress finite element analysis[J]. Journal of Ship Mechanics, 2007(1): 94–101
[11] 黄超群, 李桓, 罗传光, 等. 盲孔法与压痕法测量2219铝合金熔焊焊缝残余应力的对比分析[J]. 焊接学报, 2017, 38(7): 54–58+131.
HUANG Chao-qun, LI Huan, LUO Chuan-guang, et al. Blind hole method and indentation method comparison and analysis of 2219 aluminum alloy weld residual stress measurement [J]. Journal of Welding, 2017, 38 (7) : 58 + 54–131.
[12] 王来顺, 肖绯雄, 陈旭. 5083铝合金焊接残余应力与变形仿真分析[J]. 化学工程与装备, 2017(5): 12–15
WANG Lai-shun, XIAO Fei-xiong, CHEN Xu. 5083 aluminum alloy welding residual stress and deformation simulation[J]. Journal of Chemical Engineering and Equipment, 2017(5): 12–15
[13] 路浩, 张世平, 刘雪松, 等. 双丝焊铝合金平板残余应力梯度超声波法建立[J]. 焊接学报, 2008, 29 (2): 6l–64.
LU Hao, ZHANG Shi-ping, LIU Xue-song, et al. Double wire welding of aluminum alloy plate residual stress gradient ultrasonic method to establish [J]. Journal of Welding, 2008, 29 (2): 6l–64.
[14] 马思群, 袁永文, 冯良波, 等. 焊接速度对铝合金多道焊焊接残余应力影响研究[J]. 铁道学报, 2014, 4(1): 16–21
MA Si-qun, YUAN Yong-wen, FENG Liang-bo, et al. Welding speed of aluminium alloy welding residual stress influenced the multichannel[J]. Journal of Railway, 2014, 4(1): 16–21
[15] MI Guo-fa,?LI Chang-yun, GAO Zeng, et al. Finite element analysis of welding residual stress of aluminum plates under different butt joint parameters. [J]Engineering Review 2014, 34: 161–166
[16] 苗臣怀, 曹丽杰, 殷凯, 等. 铝合金-钢搅拌摩擦焊温度场数值研究[J]. 轻工机械, 2019, 37(6);82–87.
MIAO Chen-huai, CAO Li-jie, YIN Kai, et al. Aluminum alloy - steel friction stir welding temperature field numerical study [J]. Journal of Light Industrial Machinery, 2019, 5 (6); 82–87.