船用翼帆是远洋船舶辅助推进的首选设备,具备升力特性好、气动性能稳定、无需额外动力、结构简单等优势。本文主要分析船用翼帆的技术特点,概述当前船用翼帆辅助推进技术的研究现状,介绍不同类型的船用翼帆技术的原理和应用情况。重点分析多元素翼帆涉及的关键技术,包括最大推力系数的配置,失速控制以及机-帆-船的协调配合等。
Marine wingsail is the first choice of auxiliary propulsion equipment for ships. It has the advantages of good lift characteristics, stable aerodynamic performance, no additional power, simple structure and so on. This paper mainly introduces the technical characteristics of marine wingsail, summarizes the current research status of marine wingsail auxiliary propulsion technology, and introduces the principle and application of different types of marine wingsail. The key technologies of multi-element wingsails are analyzed, including the configuration of maximum thrust coefficient, stall control and the coordination of engine,wingsail and ship.
2022,44(19): 90-96 收稿日期:2022-01-01
DOI:10.3404/j.issn.1672-7649.2022.19.017
分类号:U662, TK8
基金项目:江苏省高等学校自然科学研究面上项目(20KJB580010);江苏海事学院科创基金(kjcx-1907)
作者简介:李臣(1988-),男,博士,讲师,研究方向为船舶新能源
参考文献:
[1] International Maritime Organisation. Second IMO GHG Study 2009[M]. CPI Books.
[2] 中国船级社. 船用硬质翼面帆评估与检验指南[M]. 2020.
[3] PRAVESH C S, KUNAL G. Revival of the modern wing sails for the propulsion of commercial ships[J]. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 2009, 3: 3
[4] MARINE B. E-ShiP1 with sailing rotors to reduce fuel costs and to reduce emissions [EB/OL]. http://www.marinebuzz.com, 2008-08-28.
[5] BURGIN N, WILSON P A. Influence of cable forces on the efficiency of kite devices as a means of alternative propulsion[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1985, 20(1-3): 349−367.
[6] DANIEL W. A high-level interfacefor a sailing vessel[D]. KTH Bachelor Thesis Report, 2021.
[7] 胡琼, 周伟新, 刁峰. IMO船舶温室气体减排初步战略解读[J]. 中国造船, 2019, 60(1): 195–201
HU Qiong, ZHOU Wei-xin, DIAO Feng. Interpretation of initial IMO strategy on reduction of GHG emissions from ships[J]. Shipbuilding of China, 2019, 60(1): 195–201
[8] MARSDEN D J. High-lift wing section for light aircraft[J]. Canadian Aeronautics and Space Journal. 1988, 34(1): 55−61.
[9] 30万吨巨轮靠风吹着跑?中国首创风帆动力, 702研究所再立大功[EB/OL]. 一点资讯. http://www.yidianzixun.com/article/0MsGPjUF.
[10] 国际船舶网. 名村造船联手日本船东开发散货船风帆动力系统[EB/OL]. http://www.eworldship.com/html/2021/Shipyards_0609/171748.html. 2021-06-09.
[11] BLAKELEY A W, FLAY R G J, RICHARDS P J . Design and optimisation of multi-element wing sails for multihull yachts[C]// 18th Australasian Fluid Mechanics Conference, Australia 2012.
[12] DANIEL W A. The CFD assisted design and experimental testing of a wingsail with high lift devices[D]. University of Salford. 1996.
[13] 张绍清, 全贵均. 五元素风帆的试验研究[J]. 气动实验与测量控制. 1993, 7(1): 50?54.
ZHANG Shao-qing, QUAN Yun-gui. An investigation on the aerodynamics performance of five-element sail[J]. Aerodynamic Experiment and Measurement and Control, 1993, 7(1): 50?54.
[14] VINCENT C, NICOLAS G, NICOLAS V. Aerodynamic study of a two-elements wingsail for high performance multihull yachts[C]// 5th High Performance Yacht Design Conference Auckland, 10−12 March, 2015.
[15] AYRO raises ?10.5M to boost development of wingsail technology[EB/OL].https://vpoglobal.com/2021/09/17/AYRO-RAISES-E10-5M-TO-BOOST-DEVELOPMENT-OF-WINGSAIL-TECHNOLOGY/.2021-09- 17.
[16] 张绍清, 全贵均, 萤文才. 多元素帆翼流体动力的数值计算[J]. 武汉水运工程学院学报, 1990, 14(3), 280−286.
ZHANG Shao-qing, QUAN Yun-gui, DONG Wen-cai. Numerical computation of aerodynamic force on multielement sail airfoil[J]. Journal of Wuhan University of Technology, 1990, 14(3), 280−286.
[17] ROSANDER M, BLOCH JOV. Modern windships phase 2. Danish Environmental Protection Agency[EB/OL]. http://www.mst.dk/udgiv/publications/2000/87-7944-019-3/html/default_eng.htm.
[18] Windship三翼风帆动力装置设计获DNV原则批复[EB/OL].https://xw.qq.com/cmsid/20210920A01T0V00?pgv_ref=baidutw.
[19] BURDEN A, HEARN G E, LLOYD T, et a1. Fast sail assisted feeder container[EB/OL]. Ship. 2010.https://www.researchgate.net/publication/277728973.
[20] NOJIRI T, SANO K, YAGI H, et al. Hybrid sail developed to show maximum lift coefficient of 2.42 for large vessels[C]// Reduction of fuel consumption and CO2 gas emissions expected(in Japanese). (2003) Mitsui Zosen Tech Rev 178: 132–138.
[21] 国际船舶网. 商船三井下单建造首艘风帆动力散货船[EB/OL]. http://www.jctrans.com/ 2020-12-15.
[22] FUJIWARA T, HIRATA K, UENO M, et al. On aerodynamic characteristics of a hybrid-sail with square soft sail [C]// Proceedings of the International Offshore and Polar Engineering Conference. Honolulu: International Society of Offshore and Polar Engineers, 2003: 2576−2583.
[23] FUJIWARA T, HIRATA K, UENO M, et al. On the development of high-performance sails for an ocean-going sailing ship[C]. Proceedings of the International Conference on Marine Simulation and Ship Manoeuvrability, MARSIM’03, Kanazawa, 2003: RC-23-1–9.
[24] LI Qiao, NIHEIA Y, NAKASHIMA T, et a1. A study on the performance of cascade hard sails and sail-equipped vessels[J]. Ocean Engineering. 2015(98): 23−31.
[25] ROMAR B G. Fatigue approach for WAPS[D]. West Pomeranian University of Technology Master Thesis. 2021.
[26] HENRY B J M P. CFD investigation of wind powered ships under extreme conditions[D]. CHALMERS UNIVERSITY OF TECHNOLOGY, Master’s thesis in Naval Architecture and Ocean Engineering, 2021.
[27] 任宝. 风翼一柴油机混合动力船舶特性分析研究与风帆控制系统设计[D]. 大连: 大连海事大学, 2011.
[28] DALIJA M K, BRANKO K. Wing sails for hybrid propulsion of a ship[J]. Journal of Sustainable Development of Energy, Water and Environment Systems. 2014, 4: 1−13.
[29] GAO H, ZHU W. Numerical investigation of bionic rudder with leading-edge protuberances[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(1): 011802.
[30] IGNAZIO M V, MATTHIEU S, XU Jinsong, et al. A numerical method for the design of ships with wind-assisted propulsion[J]. Ocean Engineering, 2015(105): 33−42.
[31] IMO 海洋环境保护委员会第 76 次会议简报[J]. 国际标准化动态. 2021/4.
[32] 钱跃华, 刘博, 吴朝晖. 船用低速发动机技术发展综述[J]. 推进技术, 2020, 41(11): 2418−2426.
QIAN Yue-hua, LIU Bo, WU Chao-hui. Review of marine low speed engine technology development[J]. Journal of Propulsion Technology, 2020, 41(11): 2418−2426.