舱室的空气质量与温度不仅会影响船员的生活质量,也会给舱室内的货物与运行元器件产生负面影响。为了保证舱室的温度与风量控制水平,优化设计基于模糊控制理论的舱室通风散热系统。根据舱室内元件发热原理以及空气流通机理,构建舱室散热数学模型。在舱室环境中装设温度传感器以及通风机、制冷机等执行器,根据传感器采集的环境参数,计算舱室通风量与散热量。改装舱室通风散热模糊控制器,在模糊控制理论的支持下,生成舱室通风散热控制指令,通过通风散热执行器的驱动,实现舱室的通风散热功能。将设计系统应用到实际的舱室环境中。与传统系统相比,优化设计系统的通风量产生误差降低了3.92 cmm,空气密度控制误差降低了0.005 5 kg/m3,且能够使舱室控制温度更接近目标值。
The air quality and temperature in the cabin will not only affect the life quality of the crew, but also have a negative impact on the cargo and operating components in the cabin. In order to ensure the cabin temperature and air volume control level, the cabin ventilation and heat dissipation system based on fuzzy control theory is optimized. According to the heating principle of components in the cabin and the mechanism of air circulation, the mathematical model of cabin heat dissipation is built. Install temperature sensors, ventilators, refrigerators and other actuators in the cabin environment, and calculate the ventilation and heat dissipation of the cabin according to the environmental parameters collected by the sensors. The cabin ventilation and heat dissipation fuzzy controller is refitted. With the support of fuzzy control theory, the cabin ventilation and heat dissipation control command is generated. The ventilation and heat dissipation function of the cabin is realized through the drive of the ventilation and heat dissipation actuator. The design system is applied to the actual cabin environment. Compared with the traditional system, the error generated by the optimized design system in ventilation volume is reduced by 3.92 cmm, and the air density control error is reduced by 0.005 5 kg/m3, The cabin temperature can be controlled closer to the target value.
2022,44(19): 114-117 收稿日期:2022-05-06
DOI:10.3404/j.issn.1672-7649.2022.19.022
分类号:TD441
基金项目:江苏省高等学校基础科学(自然科学)研究面上项目(22KJD580001)
作者简介:王雨娇(1988-),女,硕士,讲师,研究方向为船舶自动化控制
参考文献:
[1] 张驰宇, 未永, 白建国. 封闭腔体通风散热系统仿真分析[J]. 真空科学与技术学报, 2020, 40(9): 813–817
Zhang Chiyu, Wei Yong, Bai Jianguo. Simulation Analysis of Ventilation and Heat Dissipation System of Closed Chamber[J]. Journal of Vacuum Science and Technology, 2020, 40(9): 813–817
[2] 曹晏飞, 季李一珂, 王庭庭, 等. 基于GPRS技术的日光温室多段式自动通风控制系统设计[J]. 北方园艺, 2020(12): 70–75
Cao Yanfei, Ji Li Yike, Wang Tingting, et al. Design of Multi section Automatic Ventilation Control System for Solar Greenhouse Based on GPRS Technology[J]. Northern Horticulture, 2020(12): 70–75
[3] 邵嘉兴, 张世勇, 翟宇昕, 等. 北京新机场线通风空调智能化控制系统设计[J]. 都市快轨交通, 2020, 33(6): 139–145
Shao Jiaxing, Zhang Shiyong, Zhai Yuxin, et al. Design of Intelligent Control System for Ventilation and Air Conditioning of Beijing New Airport Line[J]. Urban Rapid Transit, 2020, 33(6): 139–145
[4] 曹瑞红, 李晋蒲, 赵建贵, 等. 日光温室卷帘及通风口控制系统研制[J]. 江苏农业科学, 2020, 48(5): 219–226
Cao Ruihong, Li Jinpu, Zhao Jiangui, et al. Development of control system for rolling shutters and vents of solar greenhouse[J]. Jiangsu Agricultural Science, 2020, 48(5): 219–226
[5] 冉均均, 袁磊. 基于模糊PID的矿井不停风倒机通风系统设计[J]. 煤炭技术, 2022, 41(7): 188–190
Ran Junjun, Yuan Lei. Design of mine non-stop fan reversing ventilation system based on fuzzy PID[J]. Coal Technology, 2022, 41(7): 188–190
[6] 杨勇, 张新桥, 陈艺琳, 等. 机舱无风管诱导通风系统优化设计[J]. 船舶工程, 2021, 43(S1): 255−258.
Yang Yong, Zhang Xinqiao, Chen Yilin, et al. Optimization design of ductless induction ventilation system in engine room [J] Ship Engineering, 2021, 43 (S1): 255−258