无线传感网络的应用已经逐渐由陆地发展到海洋。海洋观测数据与水下声学感知信息实时、高效、精准上传至岸基或母船,离不开无线传感网络中的数据传输系统与通信协议的协调搭配。通过软件仿真分析无线电台传输频率与系统数据通信协议传输误码率间的关系,搭建无线数据传输系统,实现数据收发功能,完成了外场湖面单节点无线电台拉锯通信。根据测试结果进行了多节点无线电台收发数据拥塞、信号串扰以及数据价值等相关领域研究。最后对海面无线数据传输系统进行功能分析,基于系统完备性的数据通信协议满足无线数据传输系统通信距离大于6 km的性能指标需求,为进一步实现海洋无线局域多传感器网络融合、打造智慧海洋提供有力支撑。
The application of wireless sensor network has gradually developed from land to ocean. Ocean observation data and underwater acoustic sensing information are uploaded to shore-based or mother ship in real time, efficiently and accurately, and it is inseparable from the coordination and combination of data transmission system and communication protocol in wireless sensor network. This paper analyzes the relationship between the transmission frequency of the radio station and the transmission error rate of the system data communication protocol through software simulation; and builds a wireless data transmission system to realize the data receiving and sending function, and completes the outfield lake single-node radio station see-saw communication. According to the test results, researches on the data congestion, signal crosstalk and data value of multi-node radio stations have been carried out. Finally, the function of the sea surface wireless data transmission system is analyzed, and the data communication protocol based on the completeness of the system meets the performance index requirements of the wireless data transmission system with a communication distance of more than 6 kilometers. Provide strong support to further realize the integration of marine wireless local multi-sensor networks and build a smart ocean.
2022,44(19): 123-128 收稿日期:2021-07-22
DOI:10.3404/j.issn.1672-7649.2022.19.024
分类号:TN919
作者简介:史博(1997-),男,硕士研究生,研究方向为无线数据传输应用、水声定位系统
参考文献:
[1] 聂为彪, 陈勇, 钱治强, 等. 水下航行器导航方案与关键技术分析[J]. 舰船科学技术, 2021, 43(S1): 37–41
[2] 周颖. 无线传感网中高能效数据汇聚关键算法研究[D]. 南京: 南京邮电大学, 2020.
[3] CMD COSTA, BALTUS P. Design methodology for industrial internet-of-things wireless systems[J]. IEEE Sensors Journal, 2020(99): 1
[4] ALIPPI C, CA MPLANI R, GALPERTI C, et al. A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring[J]. IEEE Sensors Journal, 2010, 11(1): 45–55
[5] CALMS R B. Infrared spectroscopic studies on solid oxygen [D]. Berkeley: Univ. of California, 1965.
[6] 景博, 张劼, 孙勇. 智能网络传感器与无线传感器网络[M]. 北京: 国防工业出版社, 2011.
[7] LI Y Z, ZHANG Y, LI W, et al. Marine wireless big data: efficient transmission, related applications, and challenges[J]. IEEE Wireless Communications, 2018.
[8] PARK S, BYUN J, SHIN K S, et al. Ocean current prediction based on machine learning for deciding handover priority in underwater wireless sensor networks[C]// 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). 2020.
[9] ZHANG J, LI C, YANG J, et al. Wireless propagation scene partitioning for inland waterway[C]// 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). IEEE, 2020.
[10] 张少伟, 杨文才, 辛永智, 等. 浮标基海洋观测系统研究进展[J]. 2019, 64(Z2): 2963−2973.
[11] HABIB A, MOH S. A survey on channel models for radio propagation over the sea surface[C]// 10th International Conference on Internet (ICONI 2018). 2018.