目前提出的舰船通信网络失效节点自动识别方法耗时时间较长,冗余节点关闭率较低。为了解决上述问题,提出基于数据挖掘的舰船通信网络失效节点自动识别方法。确定目标数据集,得到特征提取最优解集合和整体最优解集合,识别提取异常数据特征,建立异常数据聚类集合,引入数据密度系数计算$ i $节点数据聚类结果优化数值。构建失效节点自动识别函数,得到检索半径的适应目标函数,深入挖掘数据,通过统一化处理实现网络失效节点自动识别。实验结果表明,基于数据挖掘的舰船通信网络失效节点自动识别方法的识别准确率在99%以上,耗时时间低于4 s。
The current proposed method for automatic identification of failed nodes in ship communication network is time-consuming, and redundant nodes have a low shutdown rate. In order to solve the above problems, a new method for automatic identification of failed nodes in ship communication network is studied based on data mining. Determine the target data set, obtain the feature extraction optimal solution set and the overall optimal solution set, identify and extract the abnormal data features, establish the abnormal data clustering set, and introduce the data density coefficient to calculate the optimal value of the node data clustering result. The automatic identification function of the failed node is constructed, the adaptive objective function of the retrieval radius is obtained, the data mining is carried out, and the automatic identification of the network failure node is realized through unified processing. The experimental results show that the time-consuming time of the automatic identification method of the failure node of the ship communication network based on data mining is less than 4 s.
2022,44(19): 146-149 收稿日期:2022-05-17
DOI:10.3404/j.issn.1672-7649.2022.19.029
分类号:TP391.4
作者简介:陈文庆(1981-),男,硕士,副教授,研究方向为大数据技术及计算机多媒体技术
参考文献:
[1] 高宇鹏, 吕淑芳. 舰船通信网络脆弱节点智能定位方法[J]. 舰船科学技术, 2021(3): 103–105
GAO Yupeng, LV Shufang. Intelligent location method of vulnerable nodes in ship communication network[J]. Ship Science and Technology, 2021(3): 103–105
[2] 王盟. 舰船无线通信网络故障节点自动定位方法[J]. 舰船科学技术, 2020, 42(20): 98–100.
WANG Meng. Automatic location method of fault node in ship wireless communication network[J]. Ship Science and Technology, 2020, 42(20): 98–100
[3] 刘国强, 林叶锦, 张志政, 等. 基于粗糙集和优化DAG-SVM的船舶主机故障诊断方法[J]. 中国舰船研究, 2020, 15(1): 68–73.
LIU Guoqiang, LIN Yejin, ZHANG Zhizheng, et al. Fault diagnosis method of marine main engine based on rough set and optimized DAG-SVM[J]. China Ship Research, 2020, 15(1): 68–73
[4] 游兰, 韩雪薇, 何正伟, 等. 基于改进Seq2Seq的短时AIS轨迹序列预测模型[J]. 计算机科学, 2020, 47(9): 169–174.
YOU Lan, HAN Xuewei, HE Zhengwei, et al. Short time AIS trajectory sequence prediction model based on improved Seq2Seq[J]. Computer Science, 2020, 47(9): 169–174
[5] 魏国东, 朱石坚, 罗忠, 等. 基于数据挖掘的装备维修性定量分析与研究[J]. 海军工程大学学报, 2020, 32(2): 87–91.
WEI Guodong, ZHU Shijian, LUO Zhong, et al. Quantitative analysis and research of equipment maintainability based on data mining[J]. Journal of Naval University of Engineering, 2020, 32(2): 87–91
[6] 李忠, 靳小龙, 王亚杰, 等. 属性网络中基于变分图自编码器的异常节点检测方法[J]. 模式识别与人工智能, 2022, 35(1): 17–25.
[7] 刘明. 基于数据挖掘技术的网络控制系统建模与分析[J]. 沈阳工业大学学报, 2022(4): 446–450.
LIU Ming. Modeling and Analysis of Networked Control System Based on Data Mining Technology[J]. Journal of Shenyang University of Technology, 2022(4): 446–450
[8] 张磊, 吴昊, 赵强, 等. 基于数据挖掘技术的地下工程目标毁伤效应计算方法[J]. 爆炸与冲击, 2021, 41(3): 1–10.
[9] 任伟, 徐子立, 宋晓林, 等. 基于数据挖掘的配网数字化计量系统运行特性监测和评价方法研究[J]. 高压电器, 2020, 56(8): 183–191.
[10] 韩建富, 肖春, 宋小兵, 等. 基于GA-BP神经网络的能源互联网窃电行为识别方法[J]. 电气传动, 2022, 52(14): 38–44.