为分析含有穿透性裂纹铝合金圆管在碳纤维增强复合材料修复后的承载性能,首先对裂纹圆管以及碳纤维修复裂纹圆管在轴压载荷下进行试验研究,探究裂纹的长度、方向以及碳纤维布加固层数和宽度对试件修复效果及失效模式的影响。最后建立碳纤维布修复裂纹圆管的仿真模型,分析试件受载过程中的应力分布和变形特征。结果显示:复合材料层在试件轴压过程中能起到明显的承载作用,有效抑制裂纹扩展,提高试件极限承载力;胶层破坏是主要的失效形式,粘结强度比复合材料强度更加重要;修复效果受裂纹长度的影响较大,而不同方向裂纹圆管修复效果比较接近;随着加固层数和宽度的增加,试件的承载力峰值随之增加,并逐渐趋于稳定值。
To study the bearing performance of the cracked aluminum-alloy pipe after carbon fiber repairing, the experimental investigation of cracked pipes and pipes repaired by carbon fiber cloth winding under axial load was carried out. The effects of the length and direction of the crack and the number and width of carbon fiber cloth on the repair effect and failure modes of the specimens were further explored. A finite element model of reinforced pipe wrapped by CFRP was established, and the stress distribution and deformation characteristics during loading were analyzed. The results showed that repairing layer can play an obvious bearing role in the process of axial compression, effectively inhibiting crack propagation and improving the ultimate bearing capacity of cracked pipes; adhesive layer failure is the main failure mode and bond strength is more important than composite strength. There is little difference in the repair effect of pipes with different crack directions, and the repair effect is greatly affected by the crack length. As the number and width of reinforcement layers increase, the ultimate bearing capacity of the specimen increases,and gradually tends to be stable.
2022,44(20): 22-28 收稿日期:2022-01-21
DOI:10.3404/j.issn.1672-7649.2022.20.004
分类号:U663.9
基金项目:国家自然科学基金资助项目(52071150)
作者简介:于梓贤(1997-),男,硕士研究生,研究方向为结构强度评估与耐撞性
参考文献:
[1] SEICAMV. FRP materials for the rehabilitation of tubular steel structures for under water applications[J]. Composite Structures, 2007, 80(3): 440–450
[2] HOUSSAM T. Stress modeling of pipelines strengthened with advanced composites materials[J]. Thin-Walled Structures, 2001, 39: 153–165
[3] 唐红元, 许龙, 马梦淋, 等. 外贴碳纤维复材加固不锈钢方管短柱轴心受压试验研究[J]. 工业建筑, 2018, 48(7): 188–195
[4] SUNDARRAJA P, SRIRAM G, GANESH P Strengthening of hollow square sections under compression using FRP composites[J]. Advances in Materials Science and Engineering, 2014: 1-19.
[5] GAO XY, BALENDRA T, KOH CG. Buckling strength of slender circular tubular steel braces strengthened by CFRP[J]. Engineering structures, 2013, 2–4(46): 547–556.
[6] The American Society of Mechanical Engineers. Repair of pressure equipment and piping: PCC-2-2015[S]. New York: ASME, 2015: 143-195.
[7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1-2010[S]. 北京: 中国标准出版社, 2011.
[8] GUO Y Q, SAANOUIN K, CHEROUAT A, et al. Two methodologies for the simulation of ductile damage in sheet metal forming processes[J]. Journal of Plasticity Engineering, 2002, 43(373): 3227–3237
[9] 孟利平, 程远征. 应变率和应力三轴度对Q345B 钢动态力学性能的影响研究[J]. 船舶力学, 2019, 23(10): 1210–1220
[10] 朱浩, 朱亮, 陈剑虹. 应力三轴度和应变率对6063 铝合金力学性能的影响及材料表征[J]. 材料科学与工程学报, 2007(3): 358–362
[11] DENG J, LI J, WANG Y. Numerical study on notched steel beams strengthened by CFRP plates[J]. Construction and Building Materials, 2018, 163(28): 622–633
[12] D SIMULIA. ABAQUS 6.11 Analysis User's Manual[J]. Abaqus 611 documentation, 2011: 22.22
[13] 吴振, 陈健. 基于Hashin 准则的复合材料层合结构低速冲击研究[J]. 沈阳航空航天大学学报, 2017, 34(5): 12–20