针对结构板裂纹扩展问题,基于Abaqus的扩展有限元法,使用3种方法计算单边裂纹和中心裂纹的静态应力强度因子,发现相互作用积分法结果更加精确,误差在2%以内。采用相互作用积分法计算裂纹扩展过程的动态应力强度因子,误差在3%以内,结合低周疲劳分析,对孔边裂纹的剩余寿命进行预测,与试验结果相比,误差为3.8%,并且疲劳裂纹扩展稳定阶段的试验结果与扩展有限元分析基本一致,证明了此方法的准确性和可行性。因此,该方法为疲劳裂纹扩展过程中动态应力强度因子计算和剩余寿命预测提供可靠的参考依据。
For the crack propagation problem of structural plate, based on the extended finite element method of Abaqus, three methods were used to calculate the static stress intensity factor of the specimens with unilateral crack and the central crack respectively. The results showed that the interaction integral method was more accurate and the error was within 2%. The interaction integral method was adopted to calculate the dynamic stress intensity factor during the crack propagation process, and the error was less than 3%. Combined with the low cycle fatigue analysis, the residual life of the specimen with hole edge crack was predicted, and the error was 5.9% by comparing with the test results. In addition, the test results in the stable stage of fatigue crack propagation are basically consistent with the finite element analysis, which proved the accuracy and feasibility of this method. Therefore, this method could provide reliable reference for calculating dynamic stress intensity factor and predicting residual life during the process of fatigue crack propagation.
2022,44(20): 29-34 收稿日期:2022-05-31
DOI:10.3404/j.issn.1672-7649.2022.20.005
分类号:O346
基金项目:陕西省教育厅自然科学专项项目(21JK0534, 20JK0547);陕西省自然科学基础研究计划项目(2022JQ-449, 2021JQ-554)
作者简介:张功学(1965-),男,博士,教授,研究方向为机械系统动力学
参考文献:
[1] 底月兰, 王海斗, 董丽虹,等. 扩展有限元法在裂纹扩展问题中的应用[J]. 材料导报, 2017, 31(3): 70–74+85
DI Yuelan, WANG Haidou, DONG Lihong, et al. Application of the extended finite element method in crack propagation[J]. Materials Reports, 2017, 31(3): 70–74+85
[2] T, Belytschko, T, Black. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45: 602–620
[3] FENG S Z, LI W. An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations[J]. Applied Mathematical Modelling, 2017, 55(MAR.): 600–615
[4] NAGASHIMA T, WANG C. XFEM analyses using two-dimensional quadrilateral elements enriched with only the heaviside step function[J]. International Journal of Computational Methods, 2022, 19(2): .2150063
[5] 薛河, 王双, 王正, 等. 基于扩展有限元法的三维裂纹前缘应力强度因子计算方法[J]. 舰船科学技术, 2022, 44(3): 1–5
XU He, WANG Shuang, WANG Zheng, et al. XFEM-based calculation mothod for stress intensity factor of three-dimensional crack front[J]. Ship Science And Technology, 2022, 44(3): 1–5
[6] SHI F, LIU J. A fully coupled hydromechanical XFEM model for the simulation of 3D non-planar fluid-driven fracture propagation[J]. Computers and Geotechnics, 2021, 132(5): 103971
[7] ZOU G, HE C. Path-dependent J-integrals under mixed-mode loads of mode I and mode II[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 380–386
[8] 马梓聪. 含裂纹海洋平台结构剩余疲劳强度评估方法研究[D]. 大连: 大连理工大学, 2018.
[9] 余天堂. 含裂纹体的数值模拟[J]. 岩石力学与工程学报, 2005, 24(24): 4434–4439.
[10] 汪必升, 李毅波, 廖雅诗, 等. 基于扩展有限元模型的动态应力强度因子计算[J]. 中国机械工程, 2019, 30(11): 1294–1301.
[11] MH A, BNN A, MTA B, et al. A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method. Engineering Failure Analysis. 2021. 132: 105835.
[12] OT A, HO B, YY C. A New approach of the interaction integral method with correction terms for cracks in three-dimensional functionally graded materials using the tetrahedral finite element[J]. Theoretical and Applied Fracture Mechanics, 2021: 103065
[13] GRBOVIC A, KASTRATOVIC G, SEDMAK A, et al. Fatigue crack paths in light aircraft wing spars[J]. International Journal of Fatigue, 2019, 123(JUN.): 96–104
[14] LI Qiang, CHEN Zhixiang, LUO Shaohui. Reflection crack analysis of asphalt overlay on cement concrete pavement based on XFEM[J]. Advances in Civil Engineering. 2021, 1230447.
[15] MOES N. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150
[16] 夏世林, 磨季云. 基于J积分的含裂纹加筋板在单轴拉伸载荷下的极限强度计算[J]. 舰船科学技术, 2021, 43(7): 34–39, 59.
XIA Shi-lin. MO Ji-yun. Ultimate strength calculation of cracked stiffened-panel under loading of uniaxial tension using J-integral theory[J]. Ship Science and Technology. 2021, 43(7): 34–39, 59.
[17] BENVENUTI E. An effective XFEM with equivalent eigenstrain for stress intensity factors of homogeneous plates[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 321(1): 427–454
[18] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4).
[19] 马颖涵, 张振, 郭孟雨, 等. F690超高强钢的腐蚀疲劳裂纹扩展行为及其有限元模拟[J]. 机械工程材料, 2021(4). 65–17, 80.
[20] JIN Huijin, WU Sujun. A new driving force parameter for fatigue growth of multiple cracks[J]. International Journal of Fatigue, 2017: 10–16