针对具有节拍延迟线TDL(tapped delay line)结构和复数加权系数的宽带平面阵,提出基于空间响应偏差SRV(spatial response variation)约束的非自适应和自适应频率不变波束形成器FIB(frequency invariant beamformer)设计方法。非自适应FIB根据在参考频率点上主瓣方向无偏响应约束、加权系数向量范数约束以及平均空间响应偏差幅度约束这3个条件下最小化在参考频率点上波束图旁瓣级的准则进行设计。自适应FIB根据在参考频率点上预测信号方向无偏响应约束、在参考频率点上旁瓣区域旁瓣级约束以及平均空间响应偏差幅度约束这3个条件下最小化波束形成器输出功率的准则进行设计。通过将这2种FIB设计问题转化为标准二阶锥规划SOCP(second order cone programming)形式后,可以采用内点方法对其进行有效求解。仿真结果验证了本文方法对于宽带平面阵非自适应FIB和自适应FIB设计的有效性。
In this paper, we propose the non-adaptive frequency invariant beamformer (FIB) design and the adaptive FIB design for wideband planar array with tapped delay line (TDL) structure using spatial response variation (SRV) constraint. The non-adaptive FIB design is performed according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while maintaining the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged SRV. The proposed adaptive FIB design is performed according to the rule of minimizing the beamformer's output power while keeping the distortionless response constraint in the presumed direction of the desired signal at the reference frequency, the sidelobe level constaint in the sidelobe area at the reference frequency and the amplitude constraint of the averaged SRV. These two wideband beamformer design problems can be solved with the interior-point method after being converted to the forms of standard SOCP(second order cone programming). The computer simulation results demonstrating the effectiveness of our non-adaptive FIB and adaptive FIB design methods for wideband planar array.
2022,44(20): 60-66 收稿日期:2021-11-16
DOI:10.3404/j.issn.1672-7649.2022.20.012
分类号:TN011.6
基金项目:中国舰船研究院项目(18Y-18-55)
作者简介:陈鹏(1978-),男,博士,高级工程师,研究方向为水下装备声学信号处理
参考文献:
[1] LEBRET H, BOYD S P. Antenna array pattern synthesis via convex optimization[J]. IEEE Transaction on. Signal Processing. 1997, 45(3): 526−532.
[2] STURM J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods and Software. 1999, 11(12): 625-653.
[3] LIU Jing, GERSHMAN A B , LUO Zhi-quan , et al. Adaptive beamforming with sidelobe control: A second-order cone programming approach[J]. IEEE Signal Processing Letter. 2003, 10(11): 331-334;.
[4] PARRA L C. Steerable frequency invariant beamforming for arbitrary arrays[J]. Journal of the Acoustical Society of America, 2006, 119(6): 3839-3847.
[5] CHEN Peng, HOU Chao-huan, MA Xiao-chuan, et al. Adaptive broadband beamformer for nonuniform linear array based on second order cone programming[J]. Journal of Systems Engineering and Electronics. 2009, 20(2): 278-282.
[6] DUAN Huiping, NGA B P, SEEB C M S, et al. Applications of the SRV constraint in broadband pattern synthesis[J]. Journal of Signal Processing, 2008, 88(4): 1035-1045.
[7] CHEN Peng, LIANG Yi-hui, HOU Chao-huan, et al. SRV constraint based FIB design for wideband linear array[J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 941-947.
[8] 王华奎, 王二庆. 基于二阶锥规划的平面阵近场等旁瓣波束优化[J]. 舰船科学技术, 2012, 34(10): 73-76.
WANG Hua-kui, WANG Er-qing. Isosidelobe optimization of planar rectangular array based on second cone programming algorithm[J]. Ship Science and Technology, 2012, 34(1): 121-124.
[9] 丛雯珊, 余岚, 杜鹏飞, 等. 基于粒子群算法的宽带真延时平面阵列方向图综合[J]. 国防科技大学学报, 2020, 42(5): 31-36.
CONG Wen-shan, YU Lan, DU Peng-fei, et al. Planar array pattern synthesis of wideband real time delay based on particle swarm optimization algorithm[J]. Journal of National University of Defense Technology, 2020, 42(5): 31-36.