针对船用间冷循环燃气轮机海水换热器的冷却海水温度变化问题,建立定温掺混系统多输入多输出的数学模型。基于该系统的数学模型及实际物理状态,巧妙地通过引入虚拟控制量对整个控制回路进行解耦。结合增量式PID控制算法设计海水换热器进口水温以及掺混水箱液位的控制器。将该算法真实应用在某型船用间冷循环燃气轮机整机综合试验台上,试验证明,所设计的多变量PID解耦控制器取得了比较好的解耦控制效果,能够满足海水换热器的控制要求。
For the problem of undesired cooling water temperature change of marine intercooled cycle gas turbine seawater heat exchanger, a mathematical model of multiple input and multiple output for constant temperature mixing system was established. Based on the mathematical model and actual physical state of the system, the whole control loop is decoupled by introducing virtual control quantity. The controllers for inlet water temperature of seawater heat exchanger and level of the mixing tank are designed based on incremental PID control algorithm. The proposed algorithm is applied to a marine intercooled cycle gas turbine integrated test platform, and the test results show that the designed multi-variable PID decoupling controller achieves good decoupling control effect and can meet the control requirements of seawater heat exchanger.
2022,44(20): 102-106 收稿日期:2022-01-10
DOI:10.3404/j.issn.1672-7649.2022.20.020
分类号:U664.1;TK14
作者简介:许铁岩(1982-),男,博士,高级工程师,研究方向为燃气轮机调控
参考文献:
[1] 闻雪友, 肖东明. IC循环船用燃气轮机的可行性研究[J]. 热能动力工程, 2009, 24(1): 60–64+142-143
[2] 闫大海, 张晗. 船用燃气轮机发展趋势分析[J]. 舰船科学技术, 2021, 43(10): 84–88
YAN D H, ZHANG H. Development trend analysis of marine gas turbine[J]. Ship Science and Technology, 2021, 43(10): 84–88
[3] 刘瑞. 基于集成仿真的间冷循环燃气轮机性能优化及控制策略研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020.
[4] 李铁磊, 刘瑞, 王志涛, 等. 间冷循环燃气轮机集成仿真及优化匹配方法[J]. 哈尔滨工程大学学报, 2021, 42(8): 1195–1202
LI T L, LIU R, WANG Z T, et al. Integrated simulation and optimization matching methods of intercooled gas turbines[J]. Journal of Harbin Engineering University, 2021, 42(8): 1195–1202
[5] 李贝贝, 李飞, 张晓云. 燃气轮机间冷器设计及试验研究[J]. 热能动力工程, 2019, 34(1): 23–26+50
LI B B, LI F, ZHANG X Y. Design and experimental study for gas turbine intercooler[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(1): 23–26+50
[6] 周爱国, 曾智杰, 乌建中, 等. 风电叶片多点静力测试神经网络PID解耦控制[J]. 测控技术, 2021, 40(3): 123–129
ZHOU A G, ZENG Z J, WU J Z, et al. Neural network pid decoupling control for multi-point static test of wind turbine blades[J]. Measurement & Control Technology, 2021, 40(3): 123–129
[7] 张玉雪, 周军, 皇攀凌, 等. 改进粒子群的中药提取模糊PID解耦控制研究[J]. 控制工程, 2021: 1–8
ZHANG Y X, ZHOU J, HUANG P L, et al. Research on improved particle swarm optimization fuzzy pid decoupling control for extraction of traditional chinese medicine[J]. Control Engineering of China, 2021: 1–8
[8] 代冀阳, 应进, 李华英, 等. 基于PID网络的航空发动机多变量系统解耦控制[J]. 计算机仿真, 2011, 28(12): 27–31
DAI J Y, YING J, LI H Y, et al. Multivariable system of aeroengines decoupling controller based on PIDNN[J]. Computer Integrated Manufacturing Systems, 2011, 28(12): 27–31
[9] LIU H J, HAN P, YAO W Y, et al. The research of PID neural network decoupling controller and its application in unit load system[C]//Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004.
[10] ZHAI L, CHAI T. Nonlinear decoupling pid control using neural networks and multiple models[J]. Journal of Control Theory and Applications, 2006, 4(1): 62–69
[11] 李磊, 毛志忠, 刘芳. 多模型自适应PID解耦控制器[J]. 东北大学学报(自然科学版), 2010, 31(11): 1546–1549
LI L, MAO Z Z, LIU F. Nonlinear adaptive pid decoupling controller based on multiple models[J]. Journal of Northeastern University( Natural Science), 2010, 31(11): 1546–1549