针对通信距离不同的水声节点适用的频段部分重叠,从而导致不能直接引入传统的非正交多址接入技术(NOMA)以提高水声网络资源利用率的问题,提出一种基于部分非正交多址接入(P-NOMA)技术的上行水声通信方案。该方案的各P-NOMA节点在非重叠频段内,采用正交多址接入技术传输信息;在重叠频段内,采用NOMA技术传输信息,即节点利用各自最大或受限的传输功率同时同频发送信息给目的节点,目的节点采用串行干扰消除(SIC)技术提取信息。根据功率谱密度与容量之间的关系,本文分析推导各P-NOMA节点在功率均匀分布和非精确SIC条件下的可达容量和能量效率表达式。仿真结果验证所提方案在提升水声通信网络可达容量和能量效率上的优势,并分析关键参数对系统性能的影响。
Under the background that the optimal applicable frequency bands of nodes with different communication distances may overlap partially, and thus, the common non-orthogonal multiple access (NOMA) strategy cannot be directly introduced to enhance the resource utilization of the underwater acoustic networks, this paper proposes a partial non-orthogonal multiple access (P-NOMA) based uplink underwater acoustic communication scheme. For the proposed strategy, orthogonal multiple access technology is adopted in non-overlapping frequency band to transmit each P-NOMA node’s information; while in the overlapped frequency band, NOMA scheme is introduced, which means information of nodes are simultaneously transmitted to the destination node with their maximum or limited transmission power, and a serial interference cancellation (SIC) method is used at the destination node to extract each P-NOMA node’s information. Specially, based on the relationship between the power spectral density and the achievable capacity, we analyze the achievable performance and energy efficiency of each P-NOMA node under uniform power distribution and imperfect SIC, respectively. Numerical simulation results are provided to show the advantages of the P-NOMA based underwater acoustic uplink communication network in achievable capacity and energy efficiency, and the impacts of key parameters on system performance.
2022,44(20): 129-134 收稿日期:2022-01-18
DOI:10.3404/j.issn.1672-7649.2022.20.026
分类号:TN929.3
基金项目:广西自然科学基金资助项目(2020GXNSFBA159051);广西高校中青年教师科研基础能力提升项目(2020KY10020);北部湾大学高层次人才科研启动项目(2019KYQD40)
作者简介:颜晓娟(1985-),女,博士,副研究员,研究方向为非正交多址接入技术在空海通信中的应用
参考文献:
[1] 郭子源, 温晓光. 直接序列扩频技术在水声通信中的应用[J]. 舰船科学技术, 2020, 42(18): 139–141
GUO Z Y, WEN X G. Application of direct sequence spread spectrum technology in acoustic communication[J]. Ship Science and Technology, 2020, 42(18): 139–141
[2] WANG M, CHEN Y, SUN X, et al. Node energy consumption balanced multi-hop transmission for underwater acoustic sensor networks based on clustering algorithm[J]. IEEE Access, 2020, 8: 191231–191241
[3] YU W, CHEN Y, WAN L, et al. An energy optimization clustering scheme for multi-hop underwater acoustic cooperative sensor networks[J]. IEEE Access, 2020, 8: 89171–89184
[4] 曾睿. 基于节点发送时间和功率联合优化的水声网络MAC协议研究[D]. 广州:华南理工大学, 2017.
[5] ALL M F, JAYAKODY D N L, CHURSLN Y, et al. Recent advances and future directions on underwater wireless communications[M]. Archives of Computational Methods in Engineering, Cham, Switzerland: Springer, 2020: 1379–1412.
[6] MARAQA O, RAJASEKARAN A S, AL-AHMADI S, et al. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2192–2235
[7] YAN X, XIAO H, AN K, et al. Ergodic capacity of NOMA-based uplink satellite networks with randomly deployed users[J]. IEEE System Journal, 2020, 14(3): 3343–3350
[8] GOUTHAM V , HARIGOVINDAN V P. NOMA based cooperative relaying strategy for underwater acoustic sensor networks under imperfect SIC and imperfect CSI: a comprehensive analysis[J]. IEEE Access, 2021, 9: 32857–32872
[9] CHEON J , CHO H. Power allocation scheme for non-orthogonal multiple access in underwater acoustic communications[J]. Sensors (Basel, Switzerland), 2017, 17(11): 1–13
[10] GOUTHAM V, HARIGOVINDAN V. Full-duplex cooperative relaying with NOMA for the performance enhancement of underwater acoustic sensor networks[J]. ELSEVIER Engineering Science and Technology, 2021, 24(6): 1369–1407
[11] STOJANOVIC M. On the relationship between capacity and distance in an underwater acoustic communication channel[J], Computer Science Mobile Computing and Communications Review, 2007, 11(4): 34-43.
[12] KIM B, PARK Y, HONG D. Partial non-orthogonal multiple access (P-NOMA)[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1377–1380
[13] 张育芝, 张效民, 王安义, 等. 水声通信网络信道建模与仿真研究进展[J]. 科学技术与工程, 2021, 21(4): 1249–1261
ZHANG Y Z, ZHANG X M, WANG A Y, et al. Research progresses on channel modeling and simulation for underwater acoustic communication and networks[J]. Science Technology and Engineering, 2021, 21(4): 1249–1261
[14] JORNET J M, STOJANOVIC M ,ZORZI M. On joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks[J]. IEEE Journal of Oceanic Engineering, 2010, 35(4): 936–947