本文提出一种适用于水声通信的信号水印认证方案,在该方案中,假设合法的水声通信双方共享同一套预先设计好的扩频水印标签。首先将该水印信息叠加到OFDM系统的每个子载波上共同传输,该过程不需要占用额外的带宽;然后在水听器端Bob处将该水印标签恢复出来,并与本地共享的水印标签做相关性判决,若两者相关系数大于设定的门限,则判定该数据来源与合法的换能器端Alice,反之来自于非法的换能器端Eve。给出该物理层信号水印认证方案的系统设计方案模型,并基于Matlab软件在BELLHOP信道下进行数字仿真实验分析。当水印嵌入功率系数为0.15时,在水声通信信息误码率和水印恢复误码率进行折中,其认证成功率达到95%以上,最后探讨了该技术未来的发展方向。
A signal watermarking authentication scheme for underwater acoustic communication is proposed, which assuming legal underwater acoustic communication both sides share the same set of upfront designed spread-spectrum watermark label. The watermarking information is superimposed to the common transmission on each sub-carrier of OFDM system, this process does not need to take up additional bandwidth. Then the hydrophone which called Bob could recover this watermark label, and Bob calculates the correlation coefficient with the local shared watermark label. If the correlation coefficient is greater than the threshold, it is judged that the data is from a legitimate transducer, otherwise it comes from an illegitimate transducer. Firstly, the system scheme model of physical layer watermarking authentication scheme is presented. Then, the digital simulation experiment is analyzed in BELLHOP channel based on Matlab software. When the power coefficient of watermarking is 0.15, the authentication rate is more than 95% while the BER of information and watermarking is well. Finally, the future development direction of the technology is discussed.
2022,44(20): 135-138 收稿日期:2022-02-17
DOI:10.3404/j.issn.1672-7649.2022.20.027
分类号:TN918.9
作者简介:刘东林(1995-),男,硕士,助理工程师,研究方向为水声通信物理层安全
参考文献:
[1] 刘景美, 沈志威, 韩庆庆, 等. 水下声通信物理层密钥生成方案[J]. 通信学报, 2019, 40(2): 111–117
[2] 宋华伟, 金梁, 张胜军. 基于标签信号的物理层安全认证[J]. 电子与信息学报, 2018, 40(5): 54–59
[3] SAMEE M K , GELDMACHER J , GOTZE J. Authentication and scrambling of radio frequency signals using reversible watermarking [C]//Symposium on Communications Control and Signal Processing. IEEE, 2012: 1−4.
[4] YU P L,BARAS J S, SADLER B M. Physical-layer authentication[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(1): 38–51
[5] YU P L , PERAZZONE J B , SADLER B M, et al. Authenticated side channel via physical layer fingerprinting [C]//Communications and Network Security. IEEE, 2017: 56-66.
[6] VERMA G, YU P, SADLER B M. Physical layer authentication via fingerprint embedding using software-defined radios[J]. IEEE Access, 2015(3): 81–88
[7] YU P L, SADLER B M. MIMO authentication via deliberate fingerprinting at the physical layer[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 606–615
[8] 李丽娟. 基于OFDM的数字水印技术在无线传输中的应用研究[D]. 武汉: 武汉理工大学, 2007.
[9] 陈爽, 陈忠辉. 双伪码扩频通信的解调算法及其性能研究[J]. 有线电视技术, 2014, 12(10): 112–114
[10] 啜钢. 移动通信原理与系统第3版[M]. 北京: 北京邮电大学出版社, 2015.
[11] 郭瑞林, 雷霞, 刘东林,等. 一种基于 16QAM 部分位置嵌入信号水印的通信方法[P]. 中国发明专利, CN201911119140. X, 2020.