以海洋测量仪承压舱为研究对象,制备在海深200 m左右的海洋测量仪耐压壳并试验其可靠性。传统的制造工艺难以制备复杂结构的承压舱,多用机加工和焊接等工艺以达成相应的结构。本研究经过具体分析确定承压舱具体结构及参数,然后通过铸造三维打印工艺实现承压舱的一体化成型。最后通过打压试验表明,基于铸造三维打印的承压舱在2.5 MPa载荷下,密封性良好,且承压舱无变形和裂纹现象,其应力应变数据变化呈近似线性关系,由此可以判断整个承压舱结构处于弹性区间,强度稳定性良好。
Taking the pressure chamber of the ocean measuring instrument as the research object, the pressure shell of the ocean measuring instrument at a depth of about 200 meters was prepared and its reliability was tested. The traditional manufacturing process is difficult to prepare the pressure chamber with complex structure. Machining and welding processes are often used to achieve the corresponding structure. In this study, the specific structure and structural parameters of the pressure chamber are determined through specific analysis, and then the integrated molding of the pressure chamber is realized by casting three-dimensional printing process. Finally, the pressurization test shows that the pressure chamber based on casting three-dimensional printing has good sealing under the load of 2.5 MPa, and the pressure chamber has no deformation and crack, and the change of its stress-strain data is approximately linear. Therefore, it can be judged that the whole pressure chamber structure is in the elastic zone and has good strength stability.
2022,44(20): 177-181 收稿日期:2021-10-20
DOI:10.3404/j.issn.1672-7649.2022.20.037
分类号:TP391.7
基金项目:江苏省重点研发计划重点资助项目(BE2019002-2);江苏省青蓝工程资助项目;连云港高新区科技计划资助项目(ZD201909)
作者简介:陈劲松(1977-),男,博士,教授,研究方向为特种加工。
参考文献:
[1] 吴美仪. 海洋矿产资源的可持续发展[J]. 中国资源综合利用, 2018, 36(9): 67–69
[2] 翟国君, 黄谟涛. 海洋测量技术研究进展与展望[J]. 测绘学报, 2017, 46(10): 1752–1759
[3] 于斌, 王伟平, 周巨锁. 发展海洋测绘为自然资源管理提供强力支撑[N]. 中国海洋报, 2019-08-13(002).
[4] BELGIU G, TURC C G, CARAUSU C. Selection of subtractive manufacturing technology versus additive manufacturing technology for rapid prototyping of a polymeric product[J]. Materiale Plastice, 2021, 57(4): 343–352
[5] KARAKURT I, LIN L. 3D printing technologies: techniques, materials, and post-processing[J]. Current Opinion in Chemical Engineering, 2020, 28(6): 134–143
[6] MOHSEN, ATTARAN. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing[J]. Business Horizons, 2017, 60(5): 677–688
[7] 周志军, 刘轶, 徐云龙. 提高铸造用3D打印砂芯(型)强度的方法[J]. 铸造技术, 2016, 37(10): 2284–2285
[8] 赵宁辉, 王军伟. 一种铸造3D打印机的传感器总线控制系统[P]. 宁夏: CN106774113A, 2017-05-31.
[9] 邢小颖, 汤彬, 马运, 等. 3D陶瓷打印在精密铸造中的应用[J]. 铸造, 2019, 68(10): 1127–1130
[10] 倪允强, 王佳, 陈秀明, 等. 基于砂型3D打印技术的气缸体快速铸造工艺开发[J]. 铸造, 2019, 68(8): 911–915
[11] 王浩, 吕璇, 汪鹏程, 等. 铝合金轮毂快速熔模铸造模拟与试制[J]. 特种铸造及有色合金, 2020, 40(11): 1262–1265
[12] 董云菊, 李忠民. 3D打印及增材制造技术在铸造成形中的应用及展望[J]. 铸造技术, 2018, 39(12): 2901–2904
[13] 李文跃, 王帅, 刘涛, 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210–221
[14] CHARLES J, CHEMELLE P, 胡锦程, 等. 双相不锈钢的发展现状及未来市场趋势[J]. 世界钢铁, 2011, 11(6): 1–22