基于内聚力单元方法,开发自定义材料子程序,结合损伤判据和疲劳损伤演化准则,建立复合材料层间疲劳损伤计算模型,并通过有限元对复合材料T型接头层合结构在疲劳载荷下的分层扩展行为进行数值仿真研究,结果表明位移控制下裂纹初期扩展较快,之后裂纹长度增长载荷降低,扩展速率逐渐缓慢,载荷控制相反,裂纹因长度增长而加速扩展。
Based on the cohesive element method, a user-defined material subroutine is developed. Combined with the damage criterion and fatigue damage evolution criterion, the calculation model of interlaminar fatigue damage of composite materials is established. The delamination propagation behavior of T-joint laminated structure under fatigue load is numerically simulated by finite element method. The results show that under the control of displacement, the crack propagates rapidly at the initial stage. When the crack length increases and the load decreases, the propagation rate gradually slows down. On the contrary, the crack accelerates under the control of load due to the growth of length.
2022,44(21): 14-20 收稿日期:2022-05-10
DOI:10.3404/j.issn.1672-7649.2022.21.004
分类号:U663
作者简介:卞鑫(1989-),男,硕士,工程师,研究方向为船舶结构力学
参考文献:
[1] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104
[2] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962: 55–129
[3] NEEDLEMAN A. An analysis of tensile decohesion along an interface[J]. Journal of the Mechanics and Physics of Solids, 1990, 38: 289–324
[4] FOULK III J W, ALLEN D H, HELMS K L E. A model for predicting the damage and environmental degradation dependent life of SCS-6/Timetal®21S [0] 4 metal matrix composite[J]. Mechanics of Materials, 1998, 29: 53–68
[5] DE-ANDRÉS A, PÉREZ J L, ORTIZ M. Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading[J]. International Journal of Solids and Structures, 1999, 36: 2231–2258
[6] NGUYEN O, REPETTO E A, ORTIZ M, et al. A cohesive model of fatigue crack growth[J]. International Journal of Fracture, 2001, 110: 351–369
[7] YANG B, MALL S, RAVI-CHANDAR K. A cohesive zone model for fatigue crack growth in quasibrittle materials[J]. International Journal of Solids and Structures, 2001, 38: 3927–3944
[8] ROBINSON P, GALVANETTO U, TUMINO D, et al. Numerical simulation of fatigue-driven delamination using interface elements[J]. International Journal for Numerical Methods in Engineering, 2005, 63: 1824–1848
[9] KAWASHITA L F, HALLETT S R. A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials[J]. International Journal of Solids and Structures, 2012, 49: 2898–2913
[10] GORNET L, IJAZ H. A high-cyclic elastic fatigue damage model for carbon fibre epoxy matrix laminates with different mode mixtures[J]. Composites Part B:Engineering, 2011, 42(5): 1173–1180
[11] HOSOI A, SATO N, KUSUMOTO Y, et al. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over 108 cycles[J]. International Journal of Fatigue, 2010, 32: 29–36
[12] ZHANG J, PENG L, ZHAO L, et al. Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading[J]. International Journal of Fatigue, 2012: 7–15
[13] 翟红军, 姚卫星. 纤维增强树脂基复合材料的疲劳剩余刚度研究进展[J]. 力学进展, 2002(1): 69–81