针对船舶低频噪声控制问题,基于局域共振隔声理论,采用声学有限元方法,开展薄膜型声子晶体低频隔声特性研究,探究声子晶体构型对其隔声性能的影响,明确声子晶体正方形构型方案,基于明确的构型方案分析腔体厚度、薄膜数量以及薄膜厚度结构参数等对隔声性能的影响。研究表明,薄膜声子晶体隔声峰值频率随配重质量的增加而降低,双侧薄膜声子晶体低频隔声性能优于单侧薄膜方案,增加腔体和薄膜厚度均可提高声子晶体的隔声性能。
Aiming at the problem of ship low-frequency noise control, based on local resonance sound insulation theory, the low-frequency sound insulation characteristics of membrane-type phononic crystals are studied by the acoustic finite element method. The influence of phononic crystal configuration on its sound insulation performance is explored, and the square configuration scheme of phononic crystal is clarified. Based on this configuration scheme, the influence of structural parameters such as cavity thickness, number of membranes, and membrane thickness on sound insulation performance is analyzed. The research shows that the peak sound insulation frequency of membrane-type phononic crystals decreases with the increase of the counterweight mass. The low-frequency sound insulation performance of the bilateral membrane phononic crystals is better than that of the single-sided arrangement. In addition, increasing the thickness of the cavity and the membrane can effectively improve the sound insulation effect of phononic crystals.
2022,44(21): 25-29 收稿日期:2022-06-06
DOI:10.3404/j.issn.1672-7649.2022.21.006
分类号:U661.43
基金项目:国家自然科学基金资助项目 (U2006229)
作者简介:杨坤(1986-),男,博士,工程师,研究方向为舰船总体技术
参考文献:
[1] 康玉莹. 薄膜声学超材料隔声特性研究和优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[2] 温熙森. 声子晶体[M]. 北京: 国防工业出版社, 2009.
[3] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734–1736
[4] 王艺, 郭辉, 吕将, 等. 非均匀局域共振型声子晶体隔声特性研究[J]. 人工晶体学报, 2017, 46(7): 8
[5] 张若军, 王桂波, 张思维, 等. 四边简支型声子晶体薄板的低频隔声特性验证[J]. 舰船科学技术, 2019(9): 15–18
[6] SHEN L, WU J H, LIU Z, et al. Extremely low-frequency Lamb wave band gaps in a sandwich phononic crystal thin plate[J]. International Journal of Modern Physics B, 2015, 29(5): 1550027
[7] 王添, 王桂波, 张若军, 等. 一种薄板声子晶体的低频隔声特性研究[J]. 舰船科学技术, 2019(11): 61–64
[8] HO K M, CHENG C K, YANG Z, et al. Broadband locally resonant sonic shields[J]. Applied Physics Letters, 2003, 83(26): 5566–5568
[9] 徐俭乐, 崔洪宇, 洪明. 声子晶体夹层板结构的隔声性能研究[J]. 振动与冲击, 2021, 40(9): 7
[10] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301
[11] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature communications, 2012, 3(1): 1–7
[12] 张玉光. 薄膜型声学超材料隔声特性研究[D]. 长沙: 国防科学技术大学, 2014.
[13] 杜功焕, 朱哲民, 龚秀芬. 声学基础. 第3版[M]. 南京: 南京大学出版社, 2012.
[14] 刘如. 声子晶体隔声罩研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[15] WANG X, CHEN Y, ZHOU G, et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration, 2019, 459: 114867
[16] 张苗, 漆琼芳, 李英伟. 隔声量的阻抗管法和混响室法仿真计算对比[J]. 噪声与振动控制, 2021, 41(4): 6