为研究轴颈变形影响下的水润滑轴承液膜分布问题,以考虑轴颈变形的液膜膜厚方程为基础,依据轴系校中结果对忽略轴颈变形、考虑轴倾斜以及考虑轴弯曲3种处理方法下的膜厚分布进行对比;以考虑轴弯曲条件下的液膜模型为基准,进行水润滑轴承流固耦合计算,对忽略轴颈变形以及考虑轴倾斜产生的误差进行分析。研究结果表明,考虑轴弯曲的膜厚方程计算得出的液膜厚度分布更接近水膜实际情况。以轴弯曲模型为基准,则有忽略轴颈变形会导致液膜沿轴向分布偏离实际情况,将轴颈变形简化为轴线的倾斜会导致液膜压力大小产生误差,其中水膜最大压力误差为?14.57%~?26.54%(随载荷变化),水膜压力均值误差约在?20%左右。
In order to study the liquid film distribution of water lubricated bearing under the influence of journal deformation, based on the liquid film thickness equation considering journal deformation, and according to the shaft alignment results, the film thickness distribution under the three treatment methods of ignoring journal deformation, considering shaft inclination and considering shaft bending is compared; Based on the liquid film model considering shaft bending, the fluid structure coupling calculation of water lubricated bearing is carried out, and the errors caused by ignoring journal deformation and considering shaft inclination are analyzed. The results show that the liquid film thickness distribution calculated by the film thickness equation considering axial bending is closer to the actual situation of water film; Based on the shaft bending model, ignoring the journal deformation will lead to the deviation of the liquid film along the axial distribution from the actual situation,Simplifying the journal deformation as the inclination of the axis will lead to the error of the liquid film pressure, in which the maximum pressure error of the water film is −14.57%~−26.54% (varying with the load), and the average error of the water film pressure is about −20%.
2022,44(21): 36-40 收稿日期:2022-01-18
DOI:10.3404/j.issn.1672-7649.2022.21.008
分类号:U664.21
基金项目:国家自然科学基金资助项目(51839005)
作者简介:李森(1997-),男,硕士研究生,研究方向为船舶推进系统性能优化与仿真
参考文献:
[1] MUKHERJEE A, RAO J S. Stiffness and damping coefficients of an inclined journal bearing[J]. Mechanism & Machine Theory, 1977, 12(4): 339–355
[2] 朱少禹, 孙军, 李彪, 等. 计及轴颈倾斜的径向滑动轴承湍流润滑分析[J]. 摩擦学学报, 2019, 39(2): 235–247
[3] MALLYA, RAVINDRA, SHENOY, et al. Static characteristics of misaligned multiple axial groove water-lubricated bearing in the turbulent regime[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2017, 231(3): 385–398
[4] FENG Huihui, JIANG Shuyun, JI Aimin. Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects[J]. Tribology International, 2019, 130: 245–260
[5] 张振山, 戴旭东, 张执南, 等. 轴颈倾斜的径向轴承热弹性流体动力润滑分析[J]. 上海交通大学学报, 2013, 47(9): 1347–1352
[6] 王家序, 倪小康, 韩彦峰, 等. 倾斜轴颈滑动轴承混合热弹流研究[J]. 中南大学学报(自然科学版), 2019, 50(10): 2425–2434
[7] 王亚兵, 刘洋洋, 王报龙, 等. 轴颈倾斜的水润滑橡胶艉轴承的静态特性[J]. 西安交通大学学报, 2020, 54(5): 61–69
[8] 陆金铭, 李儒凡, 倪杰. 船舶推进轴系轴径倾斜对轴承负荷的影响[J]. 江苏科技大学学报(自然科学版), 2015, 29(5): 426–430+442
[9] FANGRUI LV, TA Na, ZHUSHI RAO. Analysis of equivalent supporting point location and carrying capacity of misaligned journal bearing[J]. Tribology International, 2017, 116: 26–38
[10] 刘正林, 周建辉, 刘宇, 等. 计入艉轴倾角的船舶艉轴承液膜压力分布计算[J]. 武汉理工大学学报, 2009, 31(9): 111–113+131
[11] 孙丽军, 薛闯, 张立浩, 等. 倾斜轴颈重载轴承润滑性能分析及试验研究[J]. 润滑与密封, 2016, 41(7): 107–111
[12] 张直明. 滑动轴承的流体动力润滑理论[M]. 北京: 高等教育出版社. 1986
[13] 王楠, 孟庆丰, 王朋朋, 等. 水润滑橡胶轴承特性仿真与试验研究[J]. 机械工程学报, 2014, 50(13): 113–121