船舶舱室通风方式直接决定各区域内部的空气质量。实验研究和传统的计算流体力学算法耗时较长,为此将多区域网络通风模型引入到舱室通风控制策略的影响研究中。以典型舱室和通风系统结构为基础,采用多区域污染物传播算法,获得不同通风控制策略下的各区域污染物浓度变化规律。结果表明,基于浓度反馈控制的通风策略与基于时间或新风量控制的通风策略相比,能够降低10%的空气质量超标风险,在空气质量保障和节能运行上具有显著优势。
The ventilation mode of ship cabin determines the air quality in each area. Experimental research and traditional computational fluid dynamics algorithms take a long time. Therefore, the multi area network ventilation(AFN) model is introduced into the study of the influence of ventilation control strategy. Based on the typical cabin and ventilation system structure. Based on the typical cabin and ventilation system structure, the AFN algorithm is adopted to obtain the variation law of pollutant concentration in each region under different ventilation control strategies. The results show that the ventilation strategy based on concentration feedback control can reduce the risk of air quality exceeding the standard by 10% compared with the ventilation strategy based on time or fresh air volume control, and has significant advantages in air quality assurance and energy-saving operation.
2022,44(21): 47-50 收稿日期:2022-01-18
DOI:10.3404/j.issn.1672-7649.2022.21.010
分类号:U662.2
作者简介:王骁(1988-),男,博士,高级工程师,研究方向为船舶大气环境综合控制
参考文献:
[1] 张小翠, 郑立捷. 船舶舱室呼吸道病菌空气传播模拟及危险评估[J]. 中北大学学报(自然科学版), 2018, 39(4): 397–403
[2] SUN S K, YUN G L. Field measurements of indoor air pollutant concentrations on two new ships[J]. Building and Environment, 2010, 45(10): 2141–2147
[3] WEBSTER AD. The contribution of ventilation system design and maintenance to air quality on passenger ships[D]. London: The Institute of Marine Engineers, 1997.
[4] WEBSTER A D, REYNOLDS G L. Indoor air quality on passenger ships[M]. The Handbook of Environmental Chemistry. Air Pollution Part H, vol. 4. NewYork: Springer, 2005: 335-349.
[5] CHEN J, WANG W, QU M L, et al. Study on hot air distribution of ship cabin air conditioning [J]. Procedia Engineering. 2015, 121: 1420-1427.
[6] ZHANG W D, WANG S Z, WANG X H, et al. The technology of air-conditioning and ventilation optimization in ship chambers [J]. Ship Science & Technology. 2011.
[7] LIU H, NI J, XING N, et al. An Investigation and analysis of indoor environment in air-conditioned Chinese ship vessel cabins [J]. indoor & Built Environment. 2011, 20(3): 377-385.
[8] 江宇. 船舶机舱通风气流组织数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[9] 周炫, 杨海燕, 王俊新, 等. 船舶机舱在不同送风形式下的气流组织数值模拟[J]. 船海工程, 2020, 49(6): 48–50
[10] 韩星星. 船舶住舱通风模式优化及污染物排除研究[D]. 武汉: 华中科技大学, 2018.
[11] 周爱民, 余涛, 沈旭东, 等. 船舶舱室污染物传播研究进展[J]. 舰船科学技术, 2014, 36(1): 10–15
[12] 宋宏. 船舶舱室通风系统的设计及优化[J]. 中国水运(下半月), 2020, 20(8): 1–2
[13] 雷世伦. 潜艇舱室CO2清除特性分析[J]. 海军工程学院学报, 1995(3): 95–98
[14] 余涛, 周爱民, 沈旭东, 等. 多区域网络模型在船舶舱室污染物传播研究中的应用[J]. 舰船科学技术, 2014, 36(8): 135–141