为准确检测船用耐腐蚀材料内部是否存在内部缺陷,提出基于激光超声技术的船用耐腐蚀材料内部缺陷检测方法。使用基于激光超声的材料内部信息采集方法,将激光超声波照射在船用耐腐蚀材料表面,获取材料内部反射的激光超声回波信息;采用基于经验模式分解的激光超声波特征提取方法,提取回波信息中的一次回波特征、二次回波特征;将所提特征输入基于改进支持向量机的内部缺陷检测模型,此模型使用遗传算法,获取可保证缺陷检测结果均方误差最小的惩罚因子后,将该惩罚因子导入支持向量机中,通过该支持向量机分类检测船用耐腐蚀材料内部缺陷。实验结果显示,本文方法对铝制船用耐腐蚀材料内部缺陷检测结果准确,具备显著的内部缺陷检测效力。
In order to accurately detect whether there are internal defects in Marine corrosion resistant materials, a method of detecting internal defects in marine corrosion resistant materials based on laser ultrasound technology was proposed. Using the method of material internal information collection based on laser ultrasound, the laser ultrasonic wave is irradiated on the surface of marine corrosion resistant material, and the laser ultrasonic echo information reflected inside the material is obtained. The laser ultrasonic feature extraction method based on empirical mode decomposition was used to extract the primary and secondary echo features of the echo information. The proposed features were input into the internal defect detection model based on improved support vector machine. The model used genetic algorithm to obtain a penalty factor that could ensure the minimum mean square error of defect detection results. The penalty factor was imported into the support vector machine, and the internal defects of marine corrosion resistant materials were detected by the support vector machine classification. The experimental results show that the proposed method is accurate and effective in detecting internal defects of aluminum marine corrosion resistant materials.
2022,44(21): 51-54 收稿日期:2022-09-07
DOI:10.3404/j.issn.1672-7649.2022.21.011
分类号:TP181
基金项目:江苏省高等学校基础科学(自然科学)研究面上项目(21KJB580010)
作者简介:刘昭亮(1990-),男,硕士,讲师,研究方向为轮机工程技术及船舶柴油机
参考文献:
[1] 张人杰, 陈卫彬, 孙宏伟, 等. 基于AP聚类和深度卷积网络的船舶焊缝缺陷检测[J]. 船舶工程, 2021, 43(8): 131–137
ZHANG Renjie, CHEN Weibin, SUN Hongwei, et al. Ship weld defect detection based on AP clustering and deep convolutional network[J]. Ship Engineering, 2021, 43(8): 131–137
[2] 吴连生, 于培师, 韦朋余, 等. 基于三维理论的TC4ELI钛合金疲劳裂纹扩展研究[J]. 船舶力学, 2022, 26(9): 1354–1362
WU Liansheng, YU Peishi, WEI Pengyu, et al. Fatigue crack growth of TC4ELI titanium alloy based on three-dimensional theory[J]. Journal of Ship Mechanics, 2022, 26(9): 1354–1362
[3] 王谦, 谭华勇, 胡可. 基于激光超声转换技术的GIS内部缺陷检测方法[J]. 应用激光, 2019, 39(4): 666–670
WANG Qian, TAN Huayong;, HU Ke. GIS internal defect detection method based on laser ultrasonic conversion technology[J]. Applied Laser, 2019, 39(4): 666–670
[4] 张进朋, 秦训鹏, 袁久鑫, 等. 基于激光超声衍射体波的缺陷定位定量检测[J]. 光学学报, 2020, 40(12): 133–142
ZHANG Jinpeng, QIN Xunpeng, YUAN Jiuxin, et al. Defect location and size detection based on laser ultrasonic diffraction bulk wave[J]. Acta Optica Sinica, 2020, 40(12): 133–142
[5] 王伟, 朱时洋, 和卫平. 基于实测几何缺陷的圆柱壳外压承载能力分析[J]. 中国舰船研究, 2019, 14(4): 40–46
WANG Wei, ZHU Shiyang, HE Weiping. Analysis on external pressure bearing capacity of cylindrical shell based on measured geometric defects[J]. Chinese Journal of Ship Research, 2019, 14(4): 40–46
[6] 徐志祥, 关守岩, 杨帆, 等. 一种基于2D-CNN的激光超声表面缺陷检测方法[J]. 应用光学, 2021, 42(1): 149–156
XU Zhixiang, GUAN Shouyan, YANG Fan, et al. Laser ultrasonic surface defects detection method based on 2D-CNN[J]. Journal of Applied Optics, 2021, 42(1): 149–156
[7] 张金水, 王群朋, 范天佑. 船舶引航梯安全检测方法[J]. 船海工程, 2019, 48(3): 179–182
ZHANG Jinshui, WANG Qunpeng, FAN Tianyou. Safety detection method for pilotage ladder[J]. Ship & Ocean Engineering, 2019, 48(3): 179–182
[8] 单宝琛, 陈晔, 郑宾, 等. 基于HHT的激光超声缺陷检测分析[J]. 应用激光, 2020, 40(4): 745–750
SHAN Baochen, CHEN Ye, ZHENG Bin, et al. Laser ultrasonic flaw detection analysis based on HHT[J]. Applied Laser, 2020, 40(4): 745–750