为了提高常规PID控制器在非线性、时变不确定性系统中的控制性能,提出一种模糊神经网络PID控制算法,利用模糊控制良好的非线性控制优势,以及神经网络超强的自学习、自适应特性,实现对PID参数的实时在线整定,并建立船舶柴油机转速模糊神经网络PID控制系统数学模型,利用Matlab/Simulink进行仿真。仿真结果表明,模糊神经网络PID控制超调量少、精度高、调节时间短,具有更好的动静态特性和抗干扰特性,系统鲁棒性有了很大提升,能很好地满足船舶柴油机转速控制系统的要求。
In order to improve the control performance of nonlinear and time-varying uncertain system,a fuzzy neural network PID control algorithm is proposed,which realizes the real-time online tuning of PID parameters by taking advantage of the nonlinear control advantages of fuzzy control as well as the super self-learning and self-adaptive characteristics of neural network.The mathematical model of fuzzy neural network PID control for marine diesel engine speed is established, the simulation results show that the fuzzy neural network PID control has less overshoot, high precision, short adjustment time, better dynamic and static characteristics and anti-interference characteristics, and the robustness of the system has been greatly improved. It can well meet the requirements of speed control system of Marine diesel engine.
2022,44(21): 101-105 收稿日期:2021-10-14
DOI:10.3404/j.issn.1672-7649.2022.21.021
分类号:U664.121;TK427
基金项目:浙江省高校访问工程师“校企合作项目”(FG2017013);浙江省高等教育“十三五”教学改革研究项目(jg20190699)
作者简介:徐红明(1978-),男,副教授,研究方向为船舶自动控制
参考文献:
[1] 丁连生, 丁洪祥, 等. 柴油机电子调速系统设计及其Matlab仿真[J]. 船海工程, 2005(1): 38–41
DING Lian-sheng, DING rlong-xia, et al. Digital governor for diesel engines based on Matlab[J]. Ship & Ocean Engineering, 2005(1): 38–41
[2] 顾林林, 张均东. 基于模糊PID控制器的柴油机电子调速器仿真[J]. 大连海事大学报, 2014(1): 57–60
GU Lin-1in, ZHANG Jun-dong. Simulation of diesel engine electronic governor based on fuzzy PID controller[J]. Journal of Dalian Maritime University, 2014(1): 57–60
[3] 石勇, 齐自达, 等. 船用柴油机齿条位置执行器与转速BP神经网络控制研究[J]. 内燃机工程, 2013, 34(4): 42–47
SHI Yong, QI Zi-da, et al. Research on the control of position actuator and marine diesel engine speed based on BP neural network[J]. Chinese Internal Combustion Engine Engineering, 2013, 34(4): 42–47
[4] 胡松, 王贺春, 等. 柴油机BP-PID调速器性能改善研究[J]. 哈尔滨工程大学学报, 2015(12): 1590–1595
HU Song, WANG Hechun1, et al. Performance improvement of a diesel engine speed controller based on BP-PID neural network[J]. Journal of Harbin Engineering University, 2015(12): 1590–1595
[5] 江国和, 刘西全. 柴油机转速智能控制系统仿真[J]. 计算机仿真, 2006(1): 65–67
JIANG Guo-he, LIU Xi-quan. Simulation of intelligent speed control system for diesel engine[J]. Computer Simulation, 2006(1): 65–67
[6] 腾万庆, 王芝秋. 一种柴油机发电机组的转动惯量估算方法[J]. 内燃机学报, 2010(6): 546–550
TENG Wan-qing, WANG Zhi-qiu. A method for estimating moment of inertia of diesel generator set[J]. Transactions of CSICE, 2010(6): 546–550
[7] 花帅, 莫贵情, 等. 基于模糊神经网络PID的发动机调速系统研究[J]. 工业控制计算机, 2016(5): 75–77
HUA Shuai, MO Gui-qing, et al. Research on engine speed control system based on fuzzy neural network PID[J]. Industrial Control Computer, 2016(5): 75–77
[8] 徐龙, 陈国金, 等. 柴油机共轨压力自适应神经模糊PID控制研究[J]. 机电工程, 2018(2): 213–218
XU long, CHEN Guo-jin, et al. Adaptive neural fuzzy PID control of common-rail pressure for diesel engine[J]. Journal of Mechanical and Elctrical Engineering, 2018(2): 213–218
[9] 罗泽邦, 辛长范, 夏朋程. 基于模糊神经网络的智能PID控制算法[J]. 海军航空工程学院学报, 2019(5): 430–436
LUO Zebang, XIN Changfan, et al. Intelligent PID control algorithm based on fuzzy neural networ[J]. Journal of Naval Aeronautical and Astronautical University, 2019(5): 430–436
[10] 赵世海, 韩雪. 基于模糊神经网络PID的焙烘机温度控制[J]. 天津工业大学学报, 2019, 38(4): 83–88
ZHAO Shi-hai, HAN Xue. Temperature control of curing machine based on fuzzy neural network PID[J]. Journal of Tianjin Polytechnic University, 2019, 38(4): 83–88