现有的跨空海界面通信方式都存在着各自的问题,磁感应通信具有信道特性稳定、抗时变环境等优点,使得其很适用于跨空海界面环境。本文对跨空海界面磁感应通信进行研究,利用分层导电媒质中的磁偶极子,建立跨空海界面磁感应传输模型,仿真磁场分量的传输特性;借助于磁感应通信系统,进行海上通信验证试验。结果表明:经相关信号处理后,实现了35 m 水深、速率15 bps 的无误码通信,验证了磁感应通信在复杂海洋环境中的可行性和有效性,为进一步跨空海界面磁感应通信的研究打下基础。
The Existing communication methods have their own problems when performing communication from air to sea. Magnetic induction (MI) communication has the advantages of stable channel characteristics and anti time-varying environment, which makes it very suitable for cross air sea interface environment. In this paper, the air-to-undersea magnetic induction (MI) communication is studied. Using the magnetic dipole model of layered conductive medium, the transmission model is established, and the transmission characteristics of magnetic field component are simulated; With the help of magnetic induction communication system, the sea communication verification test is carried out. The results show that after the relevant signal processing, the error free of air-to-undersea magnetic induction communication with 35m water depth and 15bps is realized, which verifies the feasibility and effectiveness of magnetic induction communication in complex marine environment, and lays a foundation for the further research of air-to-undersea magnetic induction communication.
2022,44(21): 129-135 收稿日期:2022-04-10
DOI:10.3404/j.issn.1672-7649.2022.21.026
分类号:TN929.3
作者简介:柴彬彬(1994-),男,硕士,助教,研究方向为声呐系统设计、综合航电设备等
参考文献:
[1] 张歆, 张小蓟. 水声通信理论与应用[M]. 西安: 西北工业大学出版社, 2012.
[2] AFANASEV K, GAFUROV S. The overview of underwater connection[C]//International Congress on Sound and Vibration, ICSV22, 12-16 July, 2015, 1–8.
[3] 李剑汶, 王小阳, 童峰. 浅海信道调频水声语音通信方法比较[J]. 舰船科学技术, 2017, 39(1): 127–131.
LI Jian-wen, WANG Xiao-yang, TONG Feng. The comparison of underwater acoustic FM speech communication methods in shallow water channels [J]. Ship Science and Technology, 2017, 39(1): 127–131.
[4] WIENER T, KARP S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communication, 1980, 28(9): 1602–1607
[5] DOMINGO M C. Magnetic induction for underwater wireless communication networks[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2929–2939
[6] GULBAHAR B, AKAN O B. A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels[J]. IEEE Transactions of Wireless Communication, 2012, 11(9): 3326–3334.
[7] GUO H, SUN Z, WANG P, Channel modeling of MI underwater communication using tri-directional coil antenna[C]//Proc. IEEE GLOBECOM '15, 2015.
[8] 王一鸣, 谢旭. 水下磁感应通信阵列天线磁场仿真与特性研究[J]. 舰船科学技术, 2022, 44(6): 106–113.
WANG Yi-ming, XIE Xu. Research on magnetic-field simulation and characteristics of underwater magnetic induction communication array antenna[J]. Ship Science and Technology. 2022, 44(6): 106–113.
[9] 柴彬彬. 跨空水界面磁感应通信信号处理[D]. 西安: 西北工业大学, 2019.
[10] DURRANI S. Air to undersea communication with magnetic dipoles[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(4): 464–470
[11] DURRANI S. Air-to-undersea communication with electric dipoles[J]. IEEE Transactions on Antennas and Propagation, 1962, 10(5): 524–528
[12] ARUTAKI A, CHIBA J. Communication in a three-layered conducting media with a vertical magnetic dipole[J]. IEEE Transactions on Antennas and Propagation, 1980, 28(4): 551–556
[13] FRASER-SMITH C, BUBENIK D M. ULF/ELF electromagnetic fields generated above a sea of finite depth by a submerged vertically-directed harmonic magnetic dipole[J], Radio Science, 1979, 14(1): 59–74.
[14] JIANG B H, LIU Y T. Expansion of spherical wave functions for hertz potential of a vertical magnetic dipole over conducting medium plane[J]. Acta Electronica Sinica, 2005, 34(6): 1152–1155.
[15] TANG J F, GONG S G, WANG J G. Computation of energy distribution of the magnetic field induced by ocean waves[J]. Acta Oceanologica Sinica. 2005, 34(6): 1152–1155.