以提升船舶无线通信网络安全性为目的,设计云计算环境下船舶无线通信网络入侵检测方法,提升入侵检测效果。利用云计算环境内Hadoop框架的分布式文件存储系统,存储船舶无线通信网络数据;通过云计算环境内Hadoop框架的MapReduce并行编程模型,对信息熵与长短期记忆网络进行分布式设计,设计并行信息熵-长短期记忆网络的入侵检测方法。该方法利用分布式信息熵选择船舶无线通信网络数据特征;以选择的特征为样本,输入至分布式长短期记忆网络内,输出无线通信网络入侵检测结果。实验证明:该方法可有效选择船舶无线通信网络数据特征,完成网络入侵检测,且入侵检测精度较高。在不同攻击类型时,该方法均具备较优的入侵检测效果。
In order to improve the security of ship wireless communication network, the intrusion detection method of ship wireless communication network in cloud computing environment is designed to improve the effect of intrusion detection. The distributed file storage system of Hadoop framework in cloud computing environment is used to store the ship wireless communication network data. Through the MapReduce parallel programming model of Hadoop framework in cloud computing environment, the distributed design of information entropy and long short-term memory network is carried out, and the intrusion detection method of parallel information entropy and long short-term memory network is designed. This method uses distributed information entropy to select data features of ship wireless communication network. The selected features are input into distributed long short-term memory network, and the intrusion detection results of wireless communication network are output. Experimental results show that the proposed method can effectively select the data features of ship wireless communication network, complete network intrusion detection, and the intrusion detection accuracy is high. Under different attack types, this method has better intrusion detection effect.
2022,44(21): 140-143 收稿日期:2022-07-16
DOI:10.3404/j.issn.1672-7649.2022.21.028
分类号:TP309
基金项目:国家重点研发计划项目(2019YFD0900800)
作者简介:李青(1982-),男,硕士,工程师,研究方向为网络安全及信息化建设
参考文献:
[1] 徐轶群, 徐弘, 孟令超, 等. 全船无线通信系统网络架构与可靠性研究[J]. 船舶工程, 2021, 43(6): 85–89+95
XU Yiqun, XU Hong, MENG Lingchao, et al. Research on network architecture and reliability of wireless communication system for full-scale ship[J]. Ship Engineering, 2021, 43(6): 85–89+95
[2] 肖衡, 龙草芳. 基于机器学习的无线传感网络通信异常入侵检测技术[J]. 传感技术学报, 2022, 35(5): 692–697
XIAO Heng, LONG Caofang. Communication anomaly intrusion detection technology for wireless sensor networks based on machine learning[J]. Chinese Journal of Sensors and Actuators, 2022, 35(5): 692–697
[3] 董瑞洪, 闫厚华, 张秋余, 等. 基于深度森林算法的分布式WSN入侵检测模型[J]. 兰州理工大学学报, 2020, 46(4): 103–109
[4] 陈家豪, 刘克中, 陈默子, 等. 基于信道状态信息的船舶敏感区域入侵检测方法[J]. 大连海事大学学报, 2019, 45(1): 89–95
[5] 陈红松, 陈京九. 基于循环神经网络的无线网络入侵检测分类模型构建与优化研究[J]. 电子与信息学报, 2019, 41(6): 1427–1433
[6] 陈兴蜀, 滑强, 王毅桐, 等. 云环境下SDN网络低速率DDoS攻击的研究[J]. 通信学报, 2019, 40(6): 210–222
CHEN Xingshu, HUA Qiang, WANG Yitong, et al. Research on low-rate DDoS attack of SDN network in cloud environment[J]. Journal on Communications, 2019, 40(6): 210–222