研究大型船用螺旋桨四轴曲面数控加工技术,提升螺旋桨曲面加工质量。通过层切法确定螺旋桨粗加工区域;利用三次均匀B样条曲线插值,在粗加工区域内获取螺旋桨曲面的控制顶点。依据控制顶点,计算四轴曲面数控加工的刀具轨迹;按照刀具轨迹生成粗加工刀具路径,完成螺旋桨粗加工。利用密切法计算粗加工后螺旋桨四轴曲面数控加工的刀位点,将刀位点转换成四轴数控机床中各轴的运动坐标,设计数控机床加工主程序,依据该主程序完成螺旋桨曲面的精加工。实验证明:该技术可有效确定粗加工区域,生成粗加工刀具路径。该技术可有效精加工螺旋桨曲面,且精加工后螺旋桨的表面光滑度较佳。该技术可降低螺旋桨曲面加工的过切量,提升螺旋桨曲面加工质量。
In order to improve the machining quality of propeller surface, the numerical control machining technology of propeller four-axis surface for large ships is studied. The roughing area of propeller was determined by layer cutting method. The control points of the propeller surface were obtained in the rough machining area by using cubic uniform B-spline interpolation. According to the control points, the tool trajectory of four-axis surface NC machining is calculated. The rough cutting tool path is generated according to the tool path to complete the rough machining of propeller. The cutter points of CNC machining of propeller four-axis surface after rough machining are calculated by using the close method, and the cutter points are converted into the motion coordinates of each axis in the four-axis CNC machine tool. The main program of CNC machine tool is designed, according to which the propeller surface is finished finishing. The experimental results show that this technique can effectively determine the rough machining area and generate the rough machining tool path. This technique can effectively finish the surface of the propeller, and the surface smoothness of the propeller after finishing is better. This technology can reduce the overcut amount of propeller surface machining and improve the quality of propeller surface machining.
2022,44(21): 182-185 收稿日期:2022-07-02
DOI:10.3404/j.issn.1672-7649.2022.21.038
分类号:TH164
作者简介:赵建林(1980-),男,硕士,讲师,研究方向为数控技术及增材制造技术
参考文献:
[1] 刘志强, 顾献安, 郭昊, 等. 碳纤维螺旋桨自动铺放成形轨迹规划方法[J]. 中国机械工程, 2020, 31(17): 2079–2084+2094
LIU Zhiqiang, GU Xianan, GUO Hao, et al. A trajectory planning method for automatic placement of carbon n fiber screw propellers[J]. China Mechanical Engineering, 2020, 31(17): 2079–2084+2094
[2] 管湘源, 储江伟, 马荣影, 等. 气力推进艇螺旋桨叶片逆向重构误差分析[J]. 机械设计, 2019, 36(6): 116–120
[3] 何改云, 庞凯瑞, 桑一村, 等. 曲面匹配方法在刀具加工轨迹优化中的应用[J]. 工程设计学报, 2019, 26(2): 190–196
[4] 何帅, 陈富民, 杨雅棠, 等. 基于点云数据的自由曲面加工误差评定[J]. 西安交通大学学报, 2019, 53(10): 135–142
HE Shuai, CHEN Fumin, YANG Yatang, et al. Machining error evaluation of free-form surface based on point cloudy data[J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 135–142
[5] 苟向锋, 朱星辰. 基于参数化模型的船用螺旋桨的数控加工[J]. 天津工业大学学报, 2019, 53(10): 135–142
[6] 张明德, 马帅, 谢乐, 等. 大型船用螺旋桨自适应加工方法研究[J]. 机械科学与技术, 2019, 38(11): 1752–1759
ZHANG Mingde, MA Shuai, XIE Le, et al. Study on adaptive machining method for large marine propeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1752–1759
[7] 周凯红, 唐进元. 复杂曲面宽行数控加工的刀位和刀具姿态综合整体优化的内蕴几何学方法[J]. 机械工程学报, 2020, 56(11): 192–201
ZHOU Kaihong, TANG Jinyuan. Tool position and orientation global optimization intrinsic geometry of strip-width-maximization manufacture technology for sculptured surface[J]. Journal of Mechanical Engineering, 2020, 56(11): 192–201