泡沫材料能够有效地吸收冲击能量且防震效果好,因此被广泛应用于舰船防护领域。本文基于Ls-dyna中的ALE方法,从结构变形和结构各组成部分吸能角度,探究背水夹芯板与背空夹芯板(PVC H100泡沫夹芯板)在近场水下爆炸载荷作用的挠度响应及吸能特性的差异,为船用PVC夹芯结构的应用及舰船的防护结构设计提供参考。结果表明芯层材料可压缩性强,具有良好的吸能特性,金属前面板变形及吸能要大于后面板;相对于背水夹芯板,由于声阻抗不同,背空板减少了透射能量,本身吸能增加,前后金属面板变形均匀化。
Foam material can effectively absorb impact energy and has a good shock-proof effect, so it is widely used in the field of ship protection. Based on the ALE method in Ls-dyna, this paper explores the effect of the water-backed sandwich panel and the hollow-backed sandwich panel (PVC H100 foam sandwich panel) in the near-field underwater explosion load from the perspective of structural deformation and energy absorption of each component of the structure. The difference in deflection response and energy-absorbing characteristics of the ship provides a reference for the application of marine PVC sandwich structures and the design of the protective structure of ships. The results show that the core material is highly compressible and has good energy absorption characteristics. The deformation and energy absorption of the metal front panel are greater than that of the rear panel; compared to the water-back sandwich panel, the backside empty sandwich reduces the transmitted energy due to the difference in acoustic impedance. The energy absorption is increased, and the deformation of the front and rear metal panels is evened.
2022,44(22): 7-12 收稿日期:2021-04-15
DOI:10.3404/j.issn.1672-7649.2022.22.002
分类号:U668.5;O38
作者简介:王嘉捷(1997-),男,硕士研究生,研究方向为水下爆炸和结构跨介质入水
参考文献:
[1] RIMOLI J J, TALAMINI B, WETZEL J J, et al. Wet-sand impulse loading of metallic plates and corrugated core sandwich panels[J]. In International Journal of Impact Engineering, 2011, 38(10): 837–848
[2] TARLOCHAN F, RAMESH S. Composite sandwich structures with nested inserts for energy absorption application[J]. In Composite Structures, 2012, 94(3): 904–916
[3] 敬霖, 王志华, 赵隆茂. 多孔金属及其夹芯结构力学性能的研究进展[J]. 力学与实践, 2015, 37(1): 1–24
[4] 赵桂平, 卢天健. 多孔金属夹层板在冲击载荷作用下的动态响应[J]. 力学学报, 2008, 40(2): 194–206
[5] 宋延泽, 王志华, 赵隆茂, 等. 泡沫金属子弹冲击下多孔金属夹芯板动力响应研究[J]. 兵工学报, 2011, 32(1): 1–7
[6] 张亭亭. 水下接触爆炸作用下舰船弦侧结构及设备防护特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[7] 王斌俊. 舰船泡沫夹芯结构在近场水下爆炸载荷下的响应特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[8] LIU W T, MING F R, ZHANG A M, et al. Continuous simulation of the whole process of underwater explosion based on Eulerian finite element approach[J]. Applied Ocean Research, 2018, 80: 125–135
[9] MING F R, ZHANG A M, WANG S P. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions[J]. Ocean Engineering, 2016, 117: 359–382
[10] LIU L T, YAO X L, ZHANG A M, et al. Research on the estimate formulas for underwater explosion bubble jet parameters[J]. Ocean Engineering, 2018, 164: 563–576
[11] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展[J]. 中国舰船研究, 2019(3): 1–13
[12] MENG Z F, CAO X Y, MING F R, et al. Study on the pressure characteristics of shock wave propagating across multilayer structures during underwater explosion[J]. Shock and Vibration, 2019: 902614
[13] ZHANG Z F, WANG C, ZHANG A M, et al. Underwater explosion of cylindrical charge near plates: Analysis of pressure characteristics and cavitation effects. International Journal of Impact Engineering[J]. 2018, 121: 91-105.
[14] SOULI, M. (2003). LS-DYNA Advanced course in ALE and fluid/structure coupling notes [R]. Livermore Software Technology Corporation(LSTC), February 2003.
[15] AUTODYN A. Theory manual revision 4.3[M]. Century Dynamics, Concord, CA, 2005.
[16] HALLQUIST J O. LS-Dyna Theory manual[J]. 2006.
[17] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading[J]. International Journal of Solids and Structures, 2006, 43(7–8): 2243–2259
[18] 张梁. 水下接触爆炸对舰船弦侧多层防护结构毁伤机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[19] HUANG W, ZHANG W, YE N, et al. Dynamic response and failure of PVC foam core metallic sandwich subjected to underwater impulsive loading[J]. Composites Part B Engineering, 2016, 97: 226–238