随着船舶向高速化方向发展,首部砰击问题变得异常突出。本文通过楔形体入水砰击试验模拟船舶首部入水砰击现象并通过有限元仿真软件Ansys/Ls-dyna对楔形体入水砰击过程进行仿真分析,通过改变斜升角角度和楔形体下落高度研究砰击载荷的变化规律,并对楔形体入水时的压力变化及入水时液面抬升现象展开分析。研究结果表明,当楔形体表面与水面接触时,砰压立即增加,随后砰压会慢慢减小,最终趋于稳定。当楔形体的斜升角在变化时,楔形体的砰击压力也会随之变化,即当斜升角的角度越大,楔形体的砰击压力值就越小;当入水速度越快时,即入水高度越高时,砰击载荷的峰值也会越来越大,但处于同一速度(即同一高度),在楔形体以不同角度入水时,当它们的角度越来越大,最后的砰击载荷峰值就会越来越小。研究成果可为船体首部砰击作用下砰击载荷的变化规律提供参考。
With the rapid development of ships, the problem of bow slamming becomes very prominent.In this paper, based on the impact test data of water entry, a two-dimensional wedge shape test model was established by Ansys/Ls-dyna finite element software, and simulation analysis was carried out on the model, focusing on the impact of different oblique lifting Angle and water entry speed on the impact load, the change of pressure during the impact process and the liquid level lifting phenomenon of the structure during water entry. The results show that when the wedge contacts the water surface, the slamming pressure increases instantly, then decreases gradually and becomes stable. With the decrease of tilt Angle and the increase of water entry velocity, the slamming pressure increases obviously, and the vertical slamming force also increases. When the inclined rise angle is small, the peak value of the slamming pressure obtained by numerical simulation and impact test has a slight deviation. In this case, the thinner jet needs to be simulated by a more dense grid. The research results can provide reference for related research.
2022,44(22): 13-18 收稿日期:2021-11-30
DOI:10.3404/j.issn.1672-7649.2022.22.003
分类号:O35
基金项目:国家自然科学基金资助项目(51779110;51809122);江苏省自然科学基金资助项目(BK20191461);江苏省高等学校自然科学研究面上项目(20KJB510046)
作者简介:纵帅(1995-),男,硕士研究生,研究方向为船舶与海洋工程结构物风险评估
参考文献:
[1] 王永虎, 石秀华. 入水冲击问题研究的现状与进展[J]. 爆炸与冲击, 2008(3): 276–282
[2] VON K T. The impact on seaplane floats during landing[R]. 1929.
[3] WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z. Angew. Math. Mech, 1932, 12(4): 193–215
[4] ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]//Proceedings of the 21st Symposium on Naval Hydrodynamics. Trondheim, Norway, National Academy Press, Washington, DC, USA, 1996: 408-423.
[5] FALTINSEN O M. Water entry of a wedge by hydroelastic orthotropic plate theory[J]. Journal of Ship Research, 1999, 43(03): 180–193
[6] STENIUS I, ROSÉN A, KUTTENKEULER J. Explicit FE-modelling of fluid–structure interaction in hull–water impacts[J]. International Shipbuilding Progress, 2006, 53(2): 103–121
[7] 陈翔, 饶成平, 万德成. MPS方法数值模拟楔形体入水问题[J]. 计算力学学报, 2017, 34(3): 356–362
[8] 张于维, 王志东, 晋文菊, 等. 二维楔形体砰击载荷研究[J]. 中国舰船研究, 2010, 5(3): 34–37
[9] 王易君, 李明海, 张中礼, 等. 基于VOF 法的平底结构自由落体入水砰击载荷模拟[J]. 振动与冲击, 2017, 36(2): 185–189
[10] WANG S, SOARES C G. Explicit FE simulation of slamming load on rigid wedges with various deadrise angles during water entry[C]// International Conference on Maritime Technology and Engineering. 2011.
[11] WANG S, SOARES C G. Slam induced loads on bow-flared sections with various roll angles[J]. Ocean Engineering, 2013, 67(8): 45–57
[12] WANG S, SOARES C G. Numerical study on the water impact of 3D bodies by an explicit finite element method[J]. Ocean Engineering, 2014, 78(3): 73–88