本文基于势流理论和波浪的辐射/绕射理论,以3600t起重船作为研究对象,利用水动力分析软件Aqwa研究了波浪载荷对起重船的频域响应特性,计算了不同海底深度下起重船作业时的附加质量和辐射阻尼,以及当遭遇横向海流载荷危险工况时,不同航速对起重船动态响应的影响。结果表明:在低频区域内,起重船的附加质量和辐射阻尼随着水深的增大而减小,而高频区域内几乎不受海水深度的影响。当起重船遭受横向波浪冲击时,航速也对其本身的动态稳定性略有影响,且频率介于0.75~1.0 rad/s之间处于危险作业范围,通过上述动态响应等分析,为起重船作业时的波浪载荷预报提供可靠的理论依据。
Based on the potential flow theory and wave radiation/diffraction theory, this paper takes a3600t crane ship as the research object, and uses the hydrodynamic analysis software Aqwa to study the frequency domain response characteristics of wave loads to the crane ship. The additional mass and radiation damping of the crane ship in operation, and the influence of different speed on the dynamic response of the crane ship when encountering the dangerous condition of lateral current load. The results show that in the low frequency region, the additional mass and radiation damping of the crane ship decrease with the increase of the water depth, while in the high frequency region it is hardly affected by the sea water depth. When the crane ship is impacted by lateral waves, the speed also has a slight impact on its own dynamic stability, and the frequency is between 0.75 rad/s and 1.0 rad/s in the dangerous operating range. It provides a reliable theoretical basis for the wave load forecast during crane ship operation.
2022,44(22): 36-42 收稿日期:2021-10-27
DOI:10.3404/j.issn.1672-7649.2022.22.007
分类号:U674.35
基金项目:太原科技大学博士科研启动基金资助项目(20182029);太原科技大学研究生优秀创新项目(XCX212053);江苏省产业前瞻与关键核心技术项目(BE2021085)
作者简介:王文浩(1976-),男,博士,副教授,研究方向为重型机械装备机械结构现代设计方法研究、增材制造技术、先进材料与结构的力学行为等
参考文献:
[1] 王言英, 李芳. 浮式结构物在波浪中的运动响应计算[J]. 水动力学研究与进展, 1995(6): 571–580
WANG Yan-ying, LI Fang. Calculation of motion response for floating structures in waves[J]. Journal of Hydrodynamics, 1995(6): 571–580
[2] LI L. Numerical seakeeping predictions of shallow water effect on two ship interactions in waves[D]. Halifax, Nova Scotia: Dalhousie University, 2001.
[3] 谢永和, 李润培, 舒志. 有限水深复合格林函数的数值计算[J]. 船舶力学, 2005(1): 23–28
XIE Yong-he, LI Run-pei, SHU Zhi. Numerical calculation of finite water-depth composite Green function[J]. Journal of Ship Mechanics, 2005(1): 23–28
[4] 刘日明, 任慧龙, 李辉. 有限水深格林函数及其导数的改进Gauss-Laguerre算法[J]. 船舶力学, 2008, 12(2): 188–196
LIU Ri-ming, REN Hui-long, LI Hui. An improved Gauss- Laguerr e method for finite water depth Gr een function and its derivatives[J]. Journal of Ship Mechanics, 2008, 12(2): 188–196
[5] 杨鹏, 寇冠元, 朱学康, 等. 浮体浅水波浪载荷数值计算方法研究[J]. 中国舰船研究, 2019, 14(1): 19–26
YANG Peng, KOU Guang-yuan, ZHU Xue-kang, et al. Numerical calculation method for wave loads of floating structures in shallow water[J]. Chinese Journal of Ship Research, 2019, 14(1): 19–26
[6] DING N, YU J X. Nonlinear optimization method of ship floating condition calculation in wave based on vector[J]. China Ocean Engineering, 2014, 28(4): 471–478
[7] CHEN Chen. Case study on wave-current interaction and its effects on ship navigation[J]. Journal of Hydrodynamics, 2018, 30(3): 411–419
[8] 陈剑文. 波浪载荷作用下浮式栈桥水动力及运动响应特性研究[D]. 镇江:江苏科技大学, 2014.
[9] 戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2007.
[10] 王树青, 梁丙臣. 海洋工程波浪力学[M]. 青岛: 中国海洋大学出版社, 2013.
[11] 孙为本. 大吨位起重船刚柔耦合动态性能研究[D]. 哈尔滨:哈尔滨工程大学, 2014.