针对声学覆盖层低频吸声问题,建立将局域共振结构内嵌到空腔覆盖层的复合结构,通过分析模态振型和振动位移云图得出其吸声机理,以复合结构的几何参数和材料参数为控制变量,以10~1 000 Hz频段内的吸声系数最大为优化目标,以Nelder-mead单纯形法为优化方法,对建立的模型进行优化设计。研究结果表明:1)复合结构的吸声机理为下半部分空腔变形实现纵波向横波的转化,局域共振结构的向上振动消耗声能,二者共同作用,提高吸声系数;2)复合结构经几何参数优化和材料参数优化后,吸声系数分别提高了13%和26%;3)吸声性能提高的原因为优化后,局域共振结构在更低频处出现反共振振型,结构动能密度较优化前提高了一个数量级,因此吸声性能提高。研究结果可为声学覆盖层的设计提供理论基础。
In order to solve the low frequency sound absorption problem of acoustic cover, a composite structure with local resonance structure embedded into the cavity cover was established. Its sound absorption mechanism was obtained by analyzing the modal shape and the vibration displacement nephogram. The geometric parameters and material parameters of the composite structure were taken as the control variables, and the maximum sound absorption coefficient in the 10~1 000 Hz frequency band was optimized. The Nelder-mead simplex method is used to optimize the model. The results show that: the sound absorption mechanism of the composite structure is as follows: the deformation of the lower part of the cavity can transform the p-wave into s-wave, and the upward vibration of the local resonance structure consumes the sound energy. The sound absorption coefficient is increased by the joint action of the two. The sound absorption coefficient of the composite structure is increased by 13% and 26% after the optimization of geometric parameters and material parameters, respectively. The reason for the improvement of sound absorption performance is that after optimization, anti-resonance mode appears at lower frequency of the local resonance structure, and the kinetic energy density of the structure is increased by one order of magnitude compared with that before optimization, so the sound absorption performance is improved. The results can provide a theoretical basis for the design of acoustic cladding.
2022,44(22): 43-49 收稿日期:2021-08-20
DOI:10.3404/j.issn.1672-7649.2022.22.008
分类号:O429
基金项目:国家自然科学基金资助项目(11602300)
作者简介:王佳蓓(1997-),女,硕士研究生,研究方向为舰船振动与噪声控制
参考文献:
[1] 朱蓓丽, 黄修长. 潜艇隐身关键技术—声学覆盖层的设计[M]. 上海: 上海交通大学出版社, 2012.
[2] 陶猛, 汤渭霖. Alberich型吸声覆盖层的低频吸声机理分析[J]. 振动与冲击, 2011, 30(1): 56–60
[3] 刘国强, 楼京俊, 何世平, 等. 基于COMSOL多层材料吸声覆盖层的吸声特性分析[J]. 舰船科学技术, 2016, 38(4): 35–37
LIU Guoqiang, LOU Jingjun, HE Shiping, et al. Analysis of sound absorption characteristics of multilayer material based on COMSOL[J]. Ship Science and Technology, 2016, 38(4): 35–37
[4] VALENTIN L, ANATOLIY S, MAXIME L, et al. Super-absorption of acoustic waves with bubble meta-screens[J]. Physical Review B : Condensed matter and materials physics, American Physical Society, 2015, 020301(R).
[5] 柯李菊, 刘成洋, 方智. 基于COMSOL的组合空腔结构声学覆盖层的声学性能分析[J]. 中国舰船研究, 2020, DOI:10.19693/j.issn.1673-3185.01673.
KE Liju, LIU Chengyang, FANG Zhi. Acoustic performance analysis of composite cavity structure acoustic overlay based on COMSOL[J]. Chinese Journal of Ship Research. 2020, DOI: 10.19693/ j.issn.1673-3185.01673.
[6] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Membrane-type metamaterials: transmission loss of multi-celled arrays[J]. Journal of Applied Physics, 2011, 109: 104902
[7] MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials, 2014, 13(9): 873–878
[8] 马勇, 贾俊芳. 遗传算法研究综述[J]. 山西大同大学学报, 2007, 23(3).
[9] 何雨. 超启发式算法综述[J]. 数字技术与应用, 2020, 38(9): 94–95
[10] 陈培帅, 张永涛, 唐东云, 等. 模拟退火法与有限元耦合反演技术研究[J]. 现代隧道技术, 2013, 50(4): 76–83
[11] 赵宏刚, 温激鸿, 杨海滨, 等. 一种含柱形空腔结构橡胶层的吸声机理及优化[J]. 物理学报, 2014, 63(13): 35−37: 134303.
[12] 余依伦, 许弘雷, 谢翔, 等. 基于多种群遗传算法的水下吸声覆盖层结构参数优化设计[J]. 科学技术与工程, 2017, 17(2).
[13] 陈竞超, 赵宏刚, 钟杰, 等. 一种单周期柱形空腔的橡胶层吸声机理及优化[C]// 第二十七届全国振动与噪声应用学术会议.
[14] 马先超, 赵宏刚. 内嵌双周期空腔橡胶层的吸声优化[J]. 声学技术, 2018, 37(6): 119–120
[15] 孟香惠, 施保昌, 胡新生. 线性规划单纯形法的动态灵敏度分析及其应用[J]. 应用数学, 2018, 31(3): 697–703
[16] 商超, 魏英杰, 张嘉钟, 等. 基于有限元法的Alberich型覆盖层吸声特性研究[J]. 船舶力学, 2011, 15(4): 443–448
[17] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带吸声性能研究[J]. 应用声学, 2019, 38(5): 869–875
ZHANG Zhonggang, ZHU Haoyu, LUO Jian, et al. Study on low Frequency and Wide band Sound absorption of thin film acoustic metamaterials[J]. Journal of Applied Acoustics, 2019, 38(5): 869–875