针对不同间距比下小尺寸串联双圆柱在双自由度下的涡激振动位移响应,受力特性以及运动轨迹等进行仿真研究,应用Fluent中的SST $ k-\omega $湍流模型,采用Coupled算法实现速度与压力的耦合,基于Overset Mesh技术进行网格划分,运用动网格技术实现流固耦合。研究结果表明当S/D=3时,上游、下游两圆柱的“锁定”区间均为Vr=7-9,当S/D=4与S/D=5时,两串联圆柱的“锁定”区间范围增大。同时随着串联两圆柱间距比增大,上下游圆柱之间的影响逐渐减小,导致升力系数相应减小。随着约化速度增大,上下游圆柱的阻力系数均趋于稳定。当S/D=3时串联两圆柱运动的规律性较差,随着间距比增大上游圆柱“8”字形变得更加标准,下游圆柱轨迹则呈现多样化的特点。
The vortex-induced vibration displacement response, motion trajectory and vortex detachment mode of small-size series double cylinders with different spacing ratios under dual degrees of freedom are simulated and studied. Using the SST $ k-\omega $ turbulence model in Fluent, the coupled algorithm is used to realize the coupling of velocity and pressure, the mesh is based on the Overset Mesh technology, the viscous N-S equation is solved by the Reynolds average method, and the fluid-structure coupling is realized by the dynamic mesh method. The research results show that the lock in interval of the upstream and downstream cylinders are both Vr=7-9 under the condition of S/D=3. The range of lock in interval of the two cylinders increases under the condition of S/D= 4 and S/D= 5. As the spacing ratio increases, the influence of the downstream cylinder on the upstream cylinder continues to decrease, and at the same time the lift coefficient decreases accordingly. As the reduction speed increases, the drag coefficients of the upstream and downstream cylinders tend to stabilize. When S/D=3, the regularity of the movement of the two cylinders in series is poor. As the spacing ratio increases, the 8 shape of the upstream cylinder becomes more standard, and the downstream cylinder trajectory shows diversified characteristics.
2022,44(22): 76-82 收稿日期:2021-11-17
DOI:10.3404/j.issn.1672-7649.2022.22.014
分类号:TE53
基金项目:国家重点研发计划(2016YFC0303800);国家自然科学基金资助项目(51579245)
作者简介:刘振雷(1997-),女,硕士研究生,研究方向是船舶与海洋结构物及油气装备设计制造
参考文献:
[1] 周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19–31.
ZHOU Shouwei, LI Qingping, ZHU Haishan , et al. The current state and future of offshore energy exploration and development technology[J]. Chinese Engineering Science. 2016, 18(2), 19–31
[2] 吴林强, 张涛, 徐晶晶, 等. 全球海洋油气勘探开发特征及趋势分析[J]. 国际石油经济, 2019, 27(3): 29–36
WU Linqiang, ZHANG Tao, XU Jingjing, et al. Characteristics and trends of global offshore oil and gas exploration and development[J]. International Petroleum Economics, 2019, 27(3): 29–36
[3] TONG X. G. , ZHANG G. Y. , WANG Z. M. , et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development Online, 2018, 45(4).
[4] 梁鹏, 黄泽平, 魏泽东. 基于全相似的串联双立管大雷诺数涡激振动研究[J]. 船海工程, 2015, 44(1): 145–149
LIANG Peng, HUANG Zeping, WEI Zedong. Study on vortex-induced vibration of the tandem risers under high reynolds[J]. Ship & Ocean Engineering, 2015, 44(1): 145–149
[5] 郭晓丽, 唐国强, 刘名名, 等. 低雷诺数下串联双圆柱涡激振动的数值研究[J]. 振动与冲击, 2014, 33(4): 60–69
GUO Xiaoli, TANG Guoqiang, LIU Mingming, et al. Numerical investigation on vortex-induced vibration of twin tandem circular cylinders under low Reynolds number[J]. Journal of Vibration and Shock, 2014, 33(4): 60–69
[6] RYU S, LEE S B, LEE B H, et al. Estimation of hydrodynamic coefficients for flow around cylinders in side-by-side arrangement with variation in separation gap[J]. Ocean Engineering, 2009, 36(9–10): 672–680
[7] 廖俊, 景思睿. 高雷诺数下双圆柱绕流的数值模拟[J]. 水动力学研究与进展(A辑), 2001(1): 101–110.
LIAO Jun, JING Sirui. Numerical simulation of flow around an cylinder at high reynolds number[J]. Journal of Hydrodynamics. 2001(1): 101–110.
[8] 王晓凯, 娄敏. 尾流干涉下串联圆柱涡激振动数值模拟研究[J]. 石油机械, 2021, 49(1): 72–79
WANG Xiaokai, LOU Min. Numerical simulation on the vortex-induced vibration of tandem cylinders under wake interference[J]. China Petroleum Machinery, 2021, 49(1): 72–79
[9] 武磊, 赵伟文, 万德成. 不同浸没长度下串列双立管涡激振动数值模拟[J]. 海洋工程, 2020, 38(3): 52–61.
WU Lei, ZHAO Weiwen, WAN Decheng. Numerical simulations on vortex-induced vibrations (VIV) of two tandem risers with different submerged lengths[J]. Ocean Engineering, 2020, 38(3): 52–61.
[10] PRASANTH T K, BEHARA S, SINGH S P, et al. Effect of blockage on vortex-induced vibrations at low Reynolds numbers [J]. Journal of Fluids & Structures, 2006, 22 (6–7) : 865–876.
[11] BRAZA M, CHASSAING P, HAMINH H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J]. Fluid Meth, 1986, 165: 79–130
[12] MENDES P A, BRANCO F A. Analysis of fluid-structure interaction by an arbitrary lagrangian-eulerian finite element formulation[J]. International Journal for Numerical Method in Fluids, 1990, 30: 897–919
[13] MENEGHINI J R, SALTARA F, SIQUEIRA C L R, et al. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangement[J]. Journal of Fluids and Structures, 2001, 15(2): 327–350
[14] 刘景伟, 郭海燕, 赵婧. 等直径串列双圆柱体绕流的数值模拟[J]. 中国海洋大学学报(自然科学版), 2013, 43(12): 92–97
LIU J W, GUO H Y, ZHAO J. Numerical simulation of flow around two tandem circular cylinders of equal diameter[J]. Periodical of Ocean University of China, 2013, 43(12): 92–97
[15] 于定勇, 刘洪超, 王昌海. 不等直径串列双圆柱体绕流的数值模拟[J]. 中国海洋大学学报(自然科学版), 2012, 42(Z2): 160–165
YU D Y, LIU H C, WANG C H. Numerical simulation of viscous flow past two tandem circular cylinders of different diameters[J]. Periodical of Ocean University of China, 2012, 42(Z2): 160–165