针对主动式升沉补偿控制系统在工作过程中存在的非线性、时滞性以及干扰性等造成系统的稳定性控制难度大的问题,为提高主动式升沉补偿控制系统的控制精度与稳定性,将自抗扰控制技术(ADRC)应用于船舶升沉补偿系统并进行数值仿真研究。对主动式升沉补偿控制系统进行数学建模以及自抗扰控制算法设计,并针对具有干扰和时滞环节的控制系统,将ADRC与传统的PID控制进行仿真效果对比,验证自抗扰算法的良好性能。最后以6级海况风浪流全耦合环境作为研究对象得出一套自抗扰参数组合,并将该套参数应用于多种海况环境进行仿真分析。仿真结果表明,不同耦合环境和不一样的海况环境下,ADRC使用同样参数下均取得了满意的升沉补偿控制效果,展现出很好的适应性能与鲁棒性。
In order to improve the control accuracy and stability of the active heave compensation control system, the automatic disturbance rejection control technology (ADRC) is applied to the ship heave compensation system and the numerical simulation is carried out. The active heave compensation control system is mathematically modeled and the ADRC algorithm is designed. For the control system with interference and time delay, the simulation results of ADRC and traditional PID control are compared to verify the good performance of ADRC algorithm. Finally, taking the six level sea state wind wave current fully coupled environment as the research object, a set of ADRC parameter combination is obtained, and the set of parameters are applied to a variety of sea state environments for simulation analysis. The simulation results show that under different coupling environments and different sea conditions, ADRC has achieved satisfactory heave compensation control effect under the same parameters, showing good adaptability and robustness.
2022,44(22): 83-88 收稿日期:2022-05-23
DOI:10.3404/j.issn.1672-7649.2022.22.015
分类号:U674.95
作者简介:刘鹏(1996-),男,硕士研究生,主要从事船舶升沉补偿控制系统研究
参考文献:
[1] 段玉响, 任政儒, 周利. 主动式升沉补偿技术研究现状和发展趋势[J]. 舰船科学技术, 2020, 42(21): 76–82
DUAN Yu-xiang, REN Zheng-ru, ZHOU Li. Research status and development trend of active heave compensation technology[J]. Ship Science and Technology, 2020, 42(21): 76–82
[2] 吴汪洋, 刘贤胜, 等. 船用起重机主动升沉补偿系统时延的实时控制研究[J]. 液压与气动, 2021, 45(4): 167–174
WU Wang-yang, LIU Xian-sheng, et al. Research on real-time control of time delay of active heave compensation system of marine crane[J]. Hydraulic and Pneumatic, 2021, 45(4): 167–174
[3] 李荣辉, 等. 欠驱动水面船舶航迹跟踪自抗扰控制[J]. 大连海事大学学报, 2013, 39(2): 5–8
LI Rong-hui, et al. Automatic disturbance rejection control for track tracking of underactuated surface ships[J]. Journal of Dalian Maritime University, 2013, 39(2): 5–8
[4] 周利, 等. 主动式升沉补偿控制系统及运动预报[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 98–104
ZHOU Li, et al. Active heave compensation control system and motion prediction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3): 98–104
[5] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002(3): 13–18
HAN Jing-qing. From PID technology to "Auto disturbance rejection control" technology[J]. Control Engineering, 2002(3): 13–18
[6] 韩京清. 控制理论——模型论还是控制论[J]. 系统科学与数学, 1989(4): 328–335
HAN Jing-qing. Control theory -model theory or cybernetics[J]. Systems Science and Mathematics, 1989(4): 328–335
[7] 楼梦瑶. 基于运动预测的ROV主动升沉补偿控制系统研究[D]. 上海: 上海交通大学, 2020.
[8] 赵顺利. RBF神经网络优化自抗扰在船舶航迹控制中的应用[D]. 大连: 大连海事大学, 2020.
[9] 张淑艳, 谢园. 自抗扰技术在船舶动力系统控制中的应用[J]. 舰船科学技术, 2020, 42(6): 106–108
ZHANG Shu-yan, Xie Yuan. Application of auto disturbance rejection technology in ship power system control[J]. Ship Science and Technology, 2020, 42(6): 106–108
[10] 段玉响. 海上吊装主动式升沉补偿与防摆控制系统研究[D]. 镇江: 江苏科技大学, 2021.
[11] 王旭辉. 船用起重机的升沉与减摇控制研究[D]. 大连: 大连理工大学, 2021.
[12] 廖薇, 等. 电驱动海洋绞车主动升沉补偿自抗扰控制系统[J]. 中国机械工程, 2018, 29(24): 2999–3008
LIAO Wei, et al. Active heave compensation auto disturbance rejection control system for electric driven marine winch[J]. China Mechanical Engineering, 2018, 29(24): 2999–3008
[13] HAN Jingqing. From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900–906
[14] PEREZ T, SMOGELI O, FOSSEN T, et al. An overview of the marine systems simulator (MSS): A simulink toolbox for marine control systems[J]. Modeling, Identification and Control, 2006, 27(4): 259–275
[15] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.