针对复杂的舰船辐射噪声,本文基于指向性声源声场势函数的球面多极子级数展开方法,建立参数化点源模型。模型将声场表示为空间共点的不同阶次多极子叠加的形式,对Pekeris波导条件下3种多极子声源的传输特性进行仿真,并对仿真得到的声场衰减规律进行对比分析。结果表明:海洋声学参数相同的情况下,水平偶极子表现出和单极子相同的声场特性;垂直偶极子在近距离能够表现出偶极子方向特性,较远距离时比前两者衰减更快;偶极子声源声场随接收点与声源之间的夹角$ \theta $变化。
Aiming at the complex ship radiated noise, a parametric point source model is established based on the spherical multipole series expansion method of the sound field potential function of directional sound source. In the model, the sound field is expressed as the superposition of multipoles of different orders in space. The transmission characteristics of three multipole sound sources under the condition of pekeris waveguide are simulated, and the attenuation laws of the sound field obtained from the simulation are compared and analyzed. It can be concluded that when the ocean acoustic parameters are the same, the horizontal dipole shows the same sound field characteristics as the monopole. Vertical dipoles can show dipole directional characteristics in short distance, and decay faster than the first two in long distance. The sound field of dipole sound source changes with the angle between the receiving point and the sound source.
2022,44(22): 110-114 收稿日期:2022-01-27
DOI:10.3404/j.issn.1672-7649.2022.22.020
分类号:U661
作者简介:苏杭(1996-),男,硕士研究生,研究方向为海洋声传播
参考文献:
[1] SASCHA M, KESSISSOGLOU N. Influence of resonance changer parameters on the radiated sound power of a submarine[J]. Acoustics Australia, 2009, 37(1): 12–17
[2] SASCHA M, SEBASTIAN O. Development of coupled FE/BE models to investigate the structural and acoustic responses of a submerged vessel[J]. Journal of Computational Acoustics. 2007, 15(1), 23-47.
[3] SEOL H, JUNG B, SUH J C, et al. Prediction of non-cavitating underwater propeller noise[J]. Journal of Sound and Vibration, 2002, 257(1): 131–156
[4] SEOL H Development of hybrid method for the prediction of underwater propeller noise[J]Journal of Sound and Vibration, 2005, 288(2): 345-360.
[5] 相敬林, 刘勋. 舰船作为体积声源的源强度谱纵向分布特性[J]. 探测与控制学报, 2002, 24(2): 5–17
XIANG J L. LIU X. The longitudinal distribution of source intensity spectrum of ship-radiated noise[J]. Journal of Detection & Control, 2002, 24(2): 5–17
[6] 刘勋, 相敬林, 周越, 等. 作为体积目标的船舶声辐射纵向分布特征的研究[J]. 西北工业大学学报, 2000, 18(3): 409–412
LIU Xun, XIANG Jinglin, ZHOU Yu, et al. Research on longitudinal distribution characteristics of the radiated noise of a ship as a volume object[J]. Journal of Northwestern Polytechnical University, 2000, 18(3): 409–412
[7] 罗建, 湛雅倩, 马定坤. 舰船多辐射声源近距离通过特性的仿真[J]. 应用声学, 2008, 27(2): 108–112
LUO Jian, ZHAN Yaqian, MA Dingkun. Simulation of Short-distance-through-signature considering multi-radiation sources of a ship[J]. Applied Acoustics, 2008, 27(2): 108–112
[8] 罗建, 赵亚磊, 黄仁可. 作为体积目标的舰船辐射噪声建模[J]. 数字海洋与水下攻防. 2018, (1): 38–42.
LUO Jian, ZHAO Yalei, HUANG Renke. Modeling of ship-radiated noise as volume targets[J]. Digital Ocean & Underwater Warfare. 2018(1): 38–42.
[9] 张永坤, 熊鹰, 赵小龙. 螺旋桨无空泡噪声预报[J]. 噪声与振动控制, 2008, 28(1): 44–47
ZHANG Yongkun, XIONG Ying, ZHAO Xiaolong. Prediction of prediction of propeller non-cavitations noise[J]. Noise and Vibration Control, 2008, 28(1): 44–47
[10] 孟春霞. 船舶辐射噪声源简化模型[D]. 哈尔滨: 哈尔滨工程大学, 2009.