传统的船舱建模是一种正向开发过程,从零部件设计到加工和装配需要很长的周期,成本相对较高。随着计算机视觉技术、计算机处理技术的不断发展,基于逆向工程的船舱三维建模技术获得迅速发展,逆向工程的特点是根据现有实体结构进行逆向建模,能够显著提高工业产品的开发周期。在船舶工业领域,逆向工程的应用获得了重点关注,船舱三维建模逆向工程的重点和难点是计算机扫描获得的点云粒子数据处理与特征提取。本文将研究重点放在船舱三维数据特征提取系统的开发和提取原理方面,介绍一种基于粒子计算LOF的船舱三维数据特征提取技术,并基于OPENGL开发了特征提取系统。
The traditional cabin modeling is a forward development process, which requires a long cycle from parts design to processing and assembly, and the cost is relatively high. With the continuous development of computer vision technology and computer processing technology, the three-dimensional modeling technology of the cabin based on reverse engineering has developed rapidly. Reverse engineering is characterized by reverse modeling based on the existing solid structure, which can significantly improve the development cycle of industrial products. In the field of shipbuilding industry, the application of reverse engineering has gained great attention. The key and difficult point of reverse engineering of three-dimensional cabin modeling is the point cloud data processing and feature extraction obtained by computer scanning. This paper focuses on the development and extraction principle of cabin 3D data feature extraction system, introduces a feature extraction technology of cabin 3D data based on particle computing LOF, and develops a feature extraction system based on OPENGL.
2022,44(22): 132-135 收稿日期:2022-08-12
DOI:10.3404/j.issn.1672-7649.2022.22.025
分类号:U627.25
基金项目:辽宁省科技厅支持计划项目(2020JH2/10700007)
作者简介:马大勇(1979-),男,硕士,副教授,主要从事数字媒体研究
参考文献:
[1] 刘界鹏. 基于三维激光扫描的房屋尺寸质量智能化检测方法[J]. 建筑科学与工程学报, 2022, 39(4): 71–80+3-4
LIU Jie-peng. Intelligent detection method of building size and quality based on 3D laser scanning[J]. Journal of Building Science and Engineering, 2022, 39(4): 71–80+3-4
[2] 朱明芳. 基于底面特征匹配的钢结构桥梁虚拟预拼装[J]. 北京测绘, 2022, 36(2): 168–172
ZHU Ming-fang. Virtual pre assembly of steel structure bridges based on bottom feature matching[J]. Beijing Surveying and Mapping, 2022, 36(2): 168–172
[3] 蒋心学, 唐飞笼, 杨迪. 机载三维激光点云数据分类数学模型[J]. 激光杂志, 2021, 42(7): 142–146
JIANG Xin-xue, TANG Fei-long, YANG Di. Mathematical model of airborne three-dimensional laser point cloud data classification[J]. Laser Journal, 2021, 42(7): 142–146