螺旋桨是目前水空两用装备动力推进的主要形式,能使装备多次完成水/空运动的切换。为快速得到最大效率时螺旋桨的几何特性,为螺旋桨详细设计提供数据输入,本文基于动量叶素理论,并通过与翼型升阻力系数快速计算的XFOIL程序进行融合,开发出水空两用对转螺旋桨快速设计程序。通过与文献结果对比及进一步分析,该螺旋桨快速设计程序可靠,最大相对误差不超3%。该程序可为水空两用对转螺旋桨详细设计提供预先输入,加快设计进程。另外,根据设计程序计算结果以及单排桨与对转桨间的效率关系,开展对转螺旋桨风洞试验,效率可达75%。该快速设计方法为后续一系列对转螺旋桨试验研究做准备,并提供生产加工相关参数。
Propeller is currently the main form of power propulsion for this kind of equipment, which could let the equipment complete multiple water/air navigation switching. To get the propeller geometrical characteristics under the maximum efficiency condition rapidly to provide the data-input for propeller detailed design, the rapid design software for water-air dual-purpose contra-rotating propeller is developed, which is based on blade element momentum theory and the integration of XFOIL software for the rapid calculation of the airfoil lift-drag coefficient. Via the comparison with the literature results and the further analysis, the software designed is reliable and the maximal relative error is less than 3%. This software could be employed to provide the advance input for the corresponding detailed design to accelerate the design progress. Besides, the water-air dual-purpose contra-rotating propeller wind tunnel experiments are performed according to the calculated results got by the designed software and the relationship of the efficiency between single-row propeller with contra-rotating one. The efficiency is 75%. This rapid design method makes preparations for the followed experimental investigations of a series of propellers and provides related parameters for manufacture.
2022,44(23): 19-22 收稿日期:2022-02-08
DOI:10.3404/j.issn.1672-7649.2022.23.004
分类号:O353.4
作者简介:孟龙(1988-),男,博士,助理研究员,研究方向为流固耦合与海上结构物设计制造
参考文献:
[1] 蔡明轩. 对转螺旋桨级间气动干涉研究[D]. 南京:南京航空航天大学, 2018.
[2] GOLDSTEIN. On the vortex theory of screw propellers[C]//Proceedings of the Royal Society, London, 1929:440-465.
[3] BLACK D M, WAINAUSKI H S. Shrouded propellers:a comprehensive performance study[R]. Pennsylvania:AAIA 5th Annual Meeting and Technical Display Philadelphia, 1968.
[4] LARRABEE E E. Practical design of minimum induced loss propellers[R]. SAE Preprint 790585, 1979.
[5] EPPLER R, HEPPERLE M. A procedure for propeller design by inverse methods[C]//Proceedings of the International Conference on Inverse Design Concepts in Engineering Science (ICIDES). Austin TX:ICIDES, 1984:445-460.
[6] AKKERMANS R A D, STUERMER A, DELFS J W. Active flow control for interaction noise reduction of contra-rotating open rotors[J]. AIAA Journal, 2016:1413-1423
[7] 杨路春, 杨晨俊, 李学斌. 基于多目标进化算法和决策技术的螺旋桨优化设计研究[J]. 中国造船, 2019, 3(60):55-66
[8] 王广东, 杨丽, 余建星. 基于改进进化算法的螺旋桨设计方法研究[J]. 船舶工程, 2004, 26(2):20-23
[9] 王晓强, 龚正琦. 水下螺旋桨技术发展现状与展望[J]. 中国水运, 2021, 4(25):74-76
[10] 余龙, Drukenbrod M, Greve M. 基于CFD技术的导管螺旋桨自动优化设计技术研究[J]. 水动力学研究与进展A辑, 2013, 4(28):438-444
[11] 曾志波, 刘登成, Kuiper G. 桨叶剖面空泡形态发展特性研究[J]. 水动力学研究与进展A辑, 2018, 1(33):9-16
[12] 项松, 王吉, 张利国, 等. 一种高效率螺旋桨设计方法[J]. 航空动力学报, 2015, 1(30):136-141