本文以10.3 m高速艇半浸式螺旋桨的设计及优化改进为基础,研究半浸式螺旋桨推进装置在桨叶高速运动过程中的水动力性能。通过相关图谱计算桨叶的水动力参数,对半浸桨叶的设计进行优化,对半浸桨桨叶随边楔形剖面角度的调整。最后通过实船试验证实当桨叶随边位置楔形剖面角度增大到60°时,桨叶在入水瞬间形成的气腔产生的压差变化达到最大,对桨叶高速运转下的效率增大,并提高了桨叶的推力,有效提高航行速度。
Based on the design and optimization of the semi-immersed propeller of 10.3 m high-speed craft, the hydrodynamic performance of the semi-immersed propeller propulsion system during the high-speed motion of the blade is studied in this paper, the hydrodynamic parameters of the blade are calculated by correlation diagrams, the design of the semi-immersed blade is optimized, and the blade is adjusted with the wedge section angle, finally, the results of the ship test show that when the wedge section angle of the blade increases by 60° , the pressure difference of the air cavity formed at the moment of the blade entering the water reaches the maximum, which increases the efficiency of the blade under high-speed operation, the thrust of the blade is increased and the sailing speed is increased effectively.
2022,44(23): 23-27 收稿日期:2022-02-23
DOI:10.3404/j.issn.1672-7649.2022.23.005
分类号:U664.33
作者简介:马卫泽(1966-),男,高级工程师,研究方向为高速船舶及推进装置设计与制造
参考文献:
[1] GHOSE, J. P. Basic ship propulsion[M]. Allied publishers, 2004.
[2] SZANTYR J A. Experimental study of surface piercing propellers for a patrol boat[J]. FAST, 1997.
[3] RAINS D A. Semi- submerged propeller for monohull displacement ship[C]//81 Propeller Symposium, 1981.
[4] MISRA RPGSC, SHA OP, SURYANARAYANA C, et al. Development of a four-bladed surface piercing propeller series[J]. Naval Engineers Journal, 2012; 124(4):105-138.
[5] 马卫泽, 桂行, 唐小光. 表面桨实用设计方法[J]. 船海工程, 2018, 47(3):3