波流混合后的波流场对波浪能装置的浮体运动和波能俘获具有不可忽视的影响。本文以多浮体铰接式波浪能装置为研究对象,建立三维数值波流水槽对装置的工作性能进行数值仿真研究。结果表明,流对装置浮体的纵摇周期、幅值及运动等影响显著。随着流速的增加,浮体运动周期减小,浮体纵摇和PTO转换功率曲线最大值均出现在浮体共振处。但当浮体固有纵摇周期小于波浪周期时,曲线呈现双峰特征,次高峰值出现在逆向流工况的纵摇幅值最大处。
The wave-current coexisting field after wave and current are mixed with each other has a non-negligible effect on the buoy motion and wave energy harvest of wave energy converter (WEC). This paper takes the articulated multi-buoy WEC as the research object, and the numerical simulation method based on the three-dimensional numerical wave-current flume is used to analyze the working performance of the WEC. The results indicate that the current has a significant effect on the period, amplitude and motion pattern of pitching of buoys. As the current velocity increases, the pitching period of the buoys decreases. The highest peaks of the pitching angle and PTO conversion power appear at the resonance. However, when the natural pitching period of the buoys is less than the wave period, the curves have two peaks, and the second highest peaks appear at the maximum pitching amplitude under the adverse current conditions.
2022,44(23): 33-36 收稿日期:2021-08-22
DOI:10.3404/j.issn.1672-7649.2022.23.007
分类号:T2051
基金项目:江苏科技大学科研启动费项目(1142931705);镇江市船舶动力设备性能重点实验室开放基金项目(10331910)
作者简介:李彪(1983-),男,博士,讲师,从事船舶与多浮体运动研究
参考文献:
[1] GUDMESTAD O T, KARUNAKARAN D. Wave current interaction[J]. Advances in Underwater Technology, Ocean Science and Offshore Engineering, 1990, 26:81-110
[2] LI Y. C. Wave-current interaction[M]. Handbook of Coastal and Ocean Engineering, Houston, 1990, 3:703−726.
[3] 李玉成. 波浪与水流共同作用下波浪要素的变化[J]. 海洋通报, 1984, 3:3-14
LI Yu-cheng. Changes of wave characteristics under coaction of wave and currents[J]. Marine Science Bulletin, 1984, 3:3-14
[4] 王涛, 李家春. 波作用量守恒原理在波流相互作用中的应用[J]. 力学学报, 1996, 28(3):281-290
WANG Tao, LI Jia-chun. Application of conservation law of wave action flux to wave current interaction[J]. Acta Mechanica Sinica, 1996, 28(3):281-290
[5] TAMBRONI N, BLONDEAUX P, VITTORI G. A simple model of wave-current interaction[J]. Journal of Fluid Mechanics, 2015, 775:328-348
[6] CRISAN D, HOLM D D, STREET O D. Wave-current interaction on a free surface[J]. Studies in Applied Mathematics, 2020.
[7] SOLANKI V M. Design and development of ocean wave energy power generation system[J]. International Journal of Engineering and Technical Research, 2021, 10(3):2
[8] GOMES M, SALVADOR H, MAGNO F, et al. Constructal design applied to geometric shapes analysis of wave energy converters[J]. Defect and Diffusion Forum, 2021, 407:147-160
[9] 崔天宇, 赵江滨, 周建林, 等. 双浮筒式波浪能发电装置的浮体运动及水动力性能分析[J]. 舰船科学技术, 2018(10):99-104
CUI Tian-yu, ZHAO Jian-bin, ZHOU Jian-lin, et al. Research on motion and hydrodynamic performance of the float in twin-pontoons wave energy converter[J]. Ship Science and Technology, 2018(10):99-104
[10] REDDY K S, PRAJWAL K S, SATWIK T, et al. A review on the gradiation towards pelamis wave energy converter[C]//2020 4th International Conference on Trends in Electronics and Informatics (ICOEI), 2020.
[11] WANG L, RINGWOOD J V. Geometric optimization of a hinge-barge wave energy converter[C]//13th European Wave and Tidal Energy Conference, 2019.
[12] 谢冬梅, 陈永平, 张长宽. 东中国海波浪分布特征研究[J]. 水运工程, 2012(11):14-21
XIE Dong-mei, CHEN Yong-ping, ZHANG Chang-kuan. On wave distribution of the East China Sea[J]. Port and Waterway Engineering, 2012(11):14-21
[13] LI B, SUI F F, YANG B S. An efficient multi-factor geometry optimization based on motion analysis and resonance response for hinged double-body floating wave energy converter[J]. Science Progress, 2020, 103(3):1-24