用计算流体力学方法对船用滤清器进行两相流数值模拟,在进气流速1~7 m/s、雾滴粒径1~50 μm范围内,分析叶片间距(22~30 mm)对滤清器阻力特性、分离效率的影响规律。结果表明,叶片间距减小,阻力增大、分离效率提高。角涡和分离涡是影响阻力变化的主要原因,弯头区惯性效应和湍流扩散是影响分离效率的主要原因。定义滤清器技术经济性能因子,分析表明,阻力经济性能因子和效率经济性能因子随叶片间距呈非单调变化,其中阻力经济性能在26 mm间距取得最佳,效率经济性能在30 mm间距取得最佳。综合技术经济性能因子随叶片间距扩大而提高并趋缓,流速越大,不同叶片间距的综合技术经济性能差异越显著。
Numerical simulation is conducted to investigate the two-phase flow in the marine filters using CFD. Effect of blade interval upon pressure drop and separation efficiency is analyzed within inlet flow velocity of 1~7 m/s and droplets′ diameter of 1~50 μm. The results indicated that, the pressure drop increases and efficiency improves with expending interval. The corner vortex and the separation vortex is responsible for pressure loss variation. The inertial effect and the turbulence dispersion in the bend account for the changing efficiency. Technical-economic performance factors are defined, the analysis implied that, the pressure-economic and the efficiency-economic performance factors show non-monotonic variation with interval, the best pressure-economic and the best efficiency-economic performances can be obtained at the interval of 26mm and 30mm, respectively. The comprehensive technical-economical performance factor improves and slows down with expending interval. Higher flow velocity yields more remarkable difference between different interval. The research can provide a guideline for the optimal design of marine filters.
2022,44(23): 49-53 收稿日期:2021-11-30
DOI:10.3404/j.issn.1672-7649.2022.22.010
分类号:U664.5+7
基金项目:江苏省绿色过程装备重点实验室开放课题(GPE202005);无锡宝宏环保船舶有限公司技术开发项目(KYH21020339)
作者简介:卜诗(1988 ? ),男,博士,研究方向为船舶动力系统气动热力学
参考文献:
[1] 翟斌, 卫禹丞, 李梦竹, 等. 船用燃气轮机进气滤清器冲蚀行为研究[J]. 舰船科学技术, 2021, 43(10):95-101
[2] 栾一刚, 马正伟, 荀振宇, 等. U型单元气液分离器阻力及防浪性能研究[J]. 汽轮机技术, 2010(2):112-119
[3] 张恩实, 王飞飞. 冷却塔折流板除雾器叶片折角优化数值模拟[J]. 流体机械, 2018, 46(7):69-75,53
[4] 陈鸿伟, 徐继法, 冯旭鹏, 等. 除雾器整体结构优化[J]. 中国电机工程学报, 2019, 39(17):5154-5160
[5] 陈鸿伟, 徐继法, 刘拓, 等. 除雾器钩板与壁面夹角对除雾效率的影响[J]. 动力工程学报, 2019, 39(12):999-1004
[6] 乔宗良, 周建新, 周卫庆, 等. 基于预数值计算的除雾器叶片结构优化设计[J]. 东南大学学报, 2013, 43(1):76-82
[7] 赵健植, 金保升, 仲兆平, 等. 基于响应曲面法的除雾器叶片效率模拟[J]. 中国电机工程学报, 2007, 2(23):61-65
[8] 张龙, 王巍, 赵勇. 不同叶片间距惯性汽水分离器阻力特性研究[J]. 汽轮机技术, 2011, 53(4):283-284,287
[9] SAYED A B, HASSAN R, ROOHOLLAH R. Determination of minimum pressure drop at different plate intervals and air velocity in a wave-plate mist eliminator[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(4):590-597
[10] 郝雅洁, 刘嘉宇, 袁竹林, 等. 除雾器内雾滴运动特性与除雾效率[J]. 化工学报, 2014, 65(12):4669-4677
[11] 袁明慧. 惯性式滤清器除雾特性及阻力特性研究[D]. 哈尔滨:哈尔滨工程大学, 2015.
[12] FANG Can, ZOU Renjie, LUO Guangqian, et al. CFD simulation design and optimization of a novel zigzag wave-plate demister with perforated plate[J]. Applied Thermal Engineering, 2021, 184:116212
[13] 范桂杰. 基于有限元分析技术的船用轮机滤清器研究[J]. 舰船科学技术, 2018, 40(8A):184-186