船舶运动姿态的准确预测对船舶的运动补偿意义重大,因此提出一种基于变分模态分解(VMD)和麻雀搜索算法(SSA)优化门控循环单元(GRU)的船舶运动姿态预测模型。首先利用VMD将船舶运动姿态数据分解为若干个本征模态分量,然后对各个本征模态分量分别建立SSA-GRU预测模型进行预测,最后累加得到预测结果。通过实船模拟的船舶运动姿态数据进行验证,证明此预测模型较于SSA-GRU和GRU预测模型预测精度均有相应提升,验证了本预测模型在船舶运动姿态数据预测的有效性。
The accurate prediction of ship motion attitude is of great significance to ship motion compensation. Therefore, a ship motion attitude prediction model based on variational modal decomposition (VMD) and sparrow search algorithm (SSA) to optimize the gated recurrent unit (GRU) is proposed. Firstly, the ship motion attitude data is decomposed into several eigenmode components by VMD, Then, the ssa-gru prediction model is established for each eigenmode component to predict, and finally the prediction results are accumulated. Through the verification of the ship motion attitude data simulated by the real ship, the experiment shows that the prediction accuracy of this prediction model is improved compared with ssa-gru and Gru prediction models, and the effectiveness of this prediction model in the prediction of ship motion attitude data is verified.
2022,44(23): 60-65 收稿日期:2021-08-03
DOI:10.3404/j.issn.1672-7649.2022.23.012
分类号:U661.32
作者简介:左思雨(1997-),女,硕士研究生,研究方向为船舶运动姿态预测
参考文献:
[1] 翁震平, 顾民, 刘长德. 基于二阶自适应Volterra级数的船舶运动极短期预报研究[J]. 船舶力学, 2010, 14(7):732-740
[2] 彭秀艳, 赵希人, 高奇峰. 船舶姿态运动实时预报算法研究[J]. 系统仿真学报, 2007(2):267-271
[3] NOVRI, SUHERMI, SUHARTONO, et al. Roll motion prediction using a hybrid deep learning and ARIMA model[J]. Procedia Computer Science, 2018, 144:251-258
[4] 沈继红. 灰色系统理论预测方法研究及其在舰船运动预报中的应用[D]. 哈尔滨:哈尔滨工程大学, 2002
[5] YIN J C, ZOU Z J, FENG X. On-line prediction of ship roll motion during maneuvering using sequential learning RBF neuralnetworks[J]. Ocean Engineering, 2013, 61(Mar. 15):139-147.
[6] 王国栋, 韩斌, 孙文赟. 基于 LSTM 的舰船运动姿态短期预测[J]. 舰船科学技术, 2017, 39(7):69-72
[7] YIN Jianchuan, PERAKIS A N, WANG Ning. A real-time ship roll motion prediction using wavelet transform and variable RBF network[J]. Ocean Engineering, 2018, 160:10-19
[8] 杨震, 王岩, 原新. 一种分解策略的船舶横摇运动姿态在线预报方法[J]. 船舶力学, 2018, 22(8):915-925
[9] 张彪, 彭秀艳, 高杰. 基于ELM-EMD-LSTM组合模型的船舶运动姿态预测[J]. 船舶力学, 2020, 24(11):1413-1421
[10] 张泽国, 尹建川, 柳成. 基于自适应变异PSO-BP算法的船舶横摇运动预测[J]. 舰船科学技术, 2016, 38(23):69-73
[11] DOMINIQUE, ZOSSO, KONSTANTIN, et al. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing A Publication of the IEEE Signal Processing Society, 2014, 62(3):531-544
[12] XUEJ, SHEN B. A novel swarm intelligence optimization approach:sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal, 2020, 8(1):22-34.
[13] CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Sci-ence, 2014.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780