本文利用CLSVOF-IB方法研究海洋管道所受的流体作用力及其涡激振动特性,其中CLSVOF(Coupled Level-Set and VOF)方法用来模拟海洋自由波面,浸入边界(immersed boundary, IB)方法用于模拟海洋管道与流体之间的相互作用力。计算结果表明,CLSVOF-IB方法能够准确分析海洋立管的流固耦合特性,可通过选择合适的管道直径和来流速度来解决管道的流致振动问题。此外通过改变流体傅汝德数(Fr数),结果还表明该数值方法能较好捕捉海洋管道与海洋自由波面的相互作用过程。
In this paper, the CLSVOF-IB method is used to study the interactive forces and the VIV (vortex-induced vibration) characteristics of marine pipeline. The CLSVOF (Coupled Level-Set and VOF) method is used to simulate the ocean free surface, and the immersed boundary (IB) method is adopted to calculate the interactive force between the marine pipeline and the surrounding fluid flow. The numerical results show that the CLSVOF-IB method can be used to simulate the fluid-structure interactions of marine pipeline accurately, and the flow-induced vibration of marine pipeline can be avoided by choosing the proper pipe diameter and inflow velocity. In addition, the numerical results show that by changing the Froude (Fr) number of fluid flow, the effects of marine pipeline on the free surface of ocean wave can be also accurately captured by this method.
2022,44(23): 80-86 收稿日期:2021-08-06
DOI:10.3404/j.issn.1672-7649.2022.23.016
分类号:TP242
基金项目:国家自然科学基金资助项目(12002097);贵州省科技计划项目(黔科合基础-ZK[2021]一般266、黔科合平台人才[2017]5789-20);贵州理工学院高层次人才启动项目(XJGC20190956)
作者简介:崔祚(1988-),男,博士,副教授,研究方向为计算流体力学、水下仿生结构设计和水下发射技术研究等
参考文献:
[1] 蒋武杰. 内波、海流与波浪中深海立管动力特性研究[D]. 上海:上海交通大学, 2012.
[2] 唐友刚, 沈国光, 刘丽琴. 海洋工程结构动力学[M]. 天津:天津大学出版社, 2008.
[3] IRANPOUR M, TAHERI F, VANDIVER J K. Structural life assessment of oil and gas risers under vortex-induced vibration[J]. Marine Structures, 2008, 21:353-373
[4] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(4):389-447
[5] BLEVINS R D. Flow-induced vibration[M]. New York:Van Nostrand, 1999.
[6] 娄敏. 海洋输流立管涡激振动试验研究及数值模拟[D]. 青岛:中国海洋大学, 2007.
[7] 白长旭, 黄一, 刘刚. 波流耦合作用下的立管涡激振动分析研究[J]. 中国海洋平台, 2008, 23(2):18-24
[8] MUKUNDAN H, HOVER F S, TRIANTAFYLLOU M S. A systematic approach to riser VIV response reconstruction[J]. Journal of Fluids and Structures, 2010, 26(5):722-746
[9] HARTLEN R T, CURRIE I G. Lift oscillation model for vortex-induced vibration[J]. Engineering Mechanics, 1970, 96:577-591
[10] 赵鹏良, 王嘉松, 蒋世全, 等. 海洋立管涡激振动的流固耦合模拟计算[J]. 海洋技术, 2010, 29(3):74-77
[11] 任大朋, 黄一, 刘刚. 一种基于Ansys和FLUENT的海洋立管的涡激响应分析方法[J]. 中国海洋平台, 2007, 22(4):32-36
[12] CUI Z, YANG Z, JIANG H, et al. A sharp interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries[J]. International Journal of Computational Methods, 2017, 14, 1750080.
[13] KIM J, KIM D, CHOI H. An immersed boundary finite volume method for simulations of flow in complex geometries[J]. Journal of Computational Physics, 2001, 171:132-150
[14] YE T, MITTAL R, UDAYKUMAR H S, et al. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries[J]. Journal of Computational Physics, 1999, 156:209-240
[15] TSENG Y H, FERZIGER J H. A ghost-cell immersed boundary method for flow in complex geometry[J]. Journal of Computational Physics, 2003, 192:593-623
[16] DIAS A, MAJUMDAR S. Numerical computation of flow around a circular cylinder[R]. Technical Report, PS II Report, BITS Pilani, India.
[17] PARK J, KWON K, CHOI H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160[J]. KSME International Journal, 1998, 12(6):1200-1205
[18] FORNBERG B. A numerical study of steady viscous flow past a circular cylinder[J]. Journal of Fluid Mechanics, 1980, 98:819-855
[19] LIU C, ZHENG X, SUNG C H. Preconditioned multigrid methods for unsteady incompressible flows[J]. Journal of Computational Physics, 1998, 139:35-57
[20] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36:413-455
[21] ANAGNOSTOPOULOS P, BEARMAN P W. Response characteristics of a vortex excited cylinder at low Reynolds numbers[J]. Journal of Fluids and Structures, 1992, 6:39-50
[22] SCHULZ K W, KALLINDERIS Y. Unsteady flow structure interaction for incompressible flows using deformable hybrid grids[J]. Journal of Computational Physics, 1998, 143:569-597
[23] LI L, SHERWIN S J, BEARMAN P W. A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies[J]. International Journal for Numerical Methods in Fluids, 2002, 38:187-206