本文建立一种基于定制可控扩散叶型的压气机多工况优化设计方法。采用双圆弧中弧线、多段圆弧厚度分布以及椭圆前缘参数化方法,提出一种将叶片气动性能与叶型几何形状参数化结合的定制可控扩散叶型设计方法。基于已有试验进行多工况气动分析的对比验证,提出考虑设计与非设计工况变权重系数的目标函数,在DOE试验设计和Kriging代理模型基础上,利用多岛遗传算法进行优化设计,实现可控扩散叶型在正攻角的损失下降4%。
In this paper, a multi-condition optimization design method of compressor based on customized controllable diffusion profile is established. A customized controllable diffusion profile design method combining aerodynamic performance of blade with profile geometry parameterization is proposed by using double arc middle arc, multi-segment arc thickness distribution and ellipse leading edge parameterization method Based on the existing experiments, the aerodynamic analysis under multiple operating conditions is compared and verified. Based on the DOE experimental design, the approximate proxy model is established, and the objective function considering the variable weight coefficient under design and off-design conditions is put forward. The multi-island genetic algorithm is used to optimize the design, and the loss of controllable diffusion airfoil at positive angle of attack is reduced by 4%.
2022,44(23): 92-98 收稿日期:2022-10-15
DOI:10.3404/j.issn.1672-7649.2022.23.018
分类号:TK221
作者简介:于洋(1982-),男,工程师,从事船舶动力装置研制、质量监督和检验验收工作
参考文献:
[1] 钟兢军, 王会社, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望 第一部分 可控扩散叶型的设计与发展[J]. 航空动力学报, 2001(03):205-211
ZHONG Jingjun, WANG shehui, WANG zhongqi. progress and prospect of controllable diffusion profile research in multistage compressors part I design and development of controllable diffusion profile[J]. journal of aerospace power, 2001(03):205-211
[2] 王会社, 钟兢军, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望 第二部分 可控扩散叶型的实验与数值模拟[J]. 航空动力学报, 2002(01):16-22
[3] 唐志林, 杨岳, 彭波. 罗茨鼓风机圆弧型双叶轮参数化设计[J]. 企业技术开发, 2006(11):6-8
[4] KESKIN A, DUTTA A K, BE STLE D. Modern Compressor Aerodynamic Blading Process Using Multi-Objective Optimization[J]. 2006.
[5] BONAIUTI D, ZANGENEH M. On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades[J]. Journal of Turbomachinery, 2009, 131(2):021014-021029
[6] SAMAD A, KIM K Y. Shape optimization of an axial compressor blade by multi-objective genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2008.
[7] 佚名. 航空发动机多学科设计优化技术研究[J]. 中国工程科学, 9(6):1-96.
YI Ming. Research on multidisciplinary design optimization technology of aero-engine. Chinese Engineering Science. 9(6):1-96.
[8] SANGER N L. The use of optimization techniques to design controlled diffusion compressor blading[J]. Journal of Engineering for Power, 1982, 105(2).
[9] KÜSTERS B, SCHREIBER H A, KÖLLER UD, et al. Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines. Part II:Experimental and Theoretical Analysis[C]//International Gas Turbine & Aeroengine Congress. 1999.
[10] 周正贵, 汪光文. 基于数值优化方法的离心压气机工作轮气动设计[J]. 航空学报, 2006, 27(1):10-10.
ZHOU Zhenggui, WANG Guangwen, Aerodynamic design of centrifugal compressor working wheel based on numerical optimization method. Acta Aeronautica Sinica, 2006(01):10-15.
[11] 刘波, 周新海, 严汝群, 轴流压气机可控扩散叶型的数值优化设计. 航空动力学报, 1991(01):9-12+89.
LIU Bo, ZHOU Xinhai, YAN Ruqun, Numerical optimization design of controllable diffusion profile of axial compressor. journal of aerospace power, 1991(01):9-12+89.
[12] ZHONG J, WANG Z. Development of controlled diffusion airfoils for multistage compressor applications part 1. design and development of controlled diffusion airfoils[C]//Cspe-jsme-asme International Conference on Power Engineering. 2001.
[13] RECHTER H, STEINERT W, LEHMANN K. Comparison of Controlled Diffusion Airfoils With Conventional NACA 65 Airfoils Developed for Stator Blade Application in a Multistage Axial Compressor[J]. Journal of Engineering for Gas Turbines & Power, 1985, 107(2):494-498
[14] BEHLKE R F. The Development of a Second-Generation of Controlled Diffusion Airfoils for Multistage Compressors[J]. Journal of Turbomachinery, 1986, 108(1).
[15] DUNHAM J. A Parametric Method of Turbine Blade Profile Design[C]//Asme International Gas Turbine Conference & Products Show, 1974.
[16] KORAKIANITIS T. Hierarchical Development of Three Direct-Design Methods for Two-Dimensional Axial-Turbomachinery Cascades[J]. Journal of Turbomachinery, 1993, 115(2).
[17] SHAHPAR S. Application of the FAITH linear design System to a compressor blade[C]//Isabe, 1999.
[18] AMMERER K, MAYER, PAFFRATH, et al. Three-Dimensional Optimization of Turbomachinery Bladings Using Sensitivity Analysis[C]//ASME TURBO EXPO. 2003.
[19] Parametric Design of Turbomachinery Airfoils Using Highly Differentiable Splines[J]. Journal of Propulsion & Power, 2015, 20(2):335-343.
[20] LUBENSTEIN J H, ROBIDEAU B A, ROSS A K. Airfoil shape for arrays of airfoils[J]. US, 1984.
[21] SHREEVE R P, ELAZAR Y, DREON J W, et al. Wake Measurements and Loss Evaluation in a Controlled Diffusion Compressor Cascade[J]. Journal of Turbomachinery, 1991, 113(4):591-599
[22] 西北工业大学. 一种压气机叶型的多工况设计优化方法:CN202111436970.2[P]. 2022-02-11.
[23] STEINERT W, EISENBERG B, STARKEN H. Design and Testing of a Controlled Diffusion Airfoil Cascade for Industrial Axial Flow Compressor Application[J]. Journal of Turbomachinery, 1991.
[24] SCHNOES M, NICKE E. Exploring a Database of Optimal Airfoils for Axial Compressor Design[C]//Isabe. 2017.
[25] FATHI A, SHADARAM A. Multi-Level Multi-Objective Multi-Point Optimization System for Axial Flow Compressor 2D Blade Design[J]. Arabian Journal for Science & Engineering, 2013, 38(2):351-364