为扩大低电导率冷却液在氢燃料电池系统的应用,对系统中常用的金属材料在低电导率乙二醇冷却液中的腐蚀性进行试验研究和评估,包括电化学测试、静态腐蚀试验、动态腐蚀试验和装车试验,并针对系统常用的非金属材料开展冷却液相容性试验研究。最终的装车试验结果表明,铝合金3A21、铝合金5A05、铝合金6063、不锈钢316L、紫铜、黄铜和钎焊片的质量变化均小于±10 mg/片;相容性试验结果表明,三元乙丙橡胶、氟橡胶、丁腈橡胶、聚乙烯树脂、聚丙烯树脂、聚四氟乙烯树脂的质量变化均小于±5%。该研究为扩大低电导率乙二醇冷却液在氢燃料电池系统的应用提供参考。
In order to expand the application of low-conductivity coolant in hydrogen fuel cell systems,experimental studies and evaluations on the corrosiveness of metal materials commonly used in the system in low-conductivity glycol coolant were carried out,including electrochemical tests,static corrosion tests,dynamic corrosion test and loading test,and carried out the coolant compatibility test research for the non-metallic materials commonly used in the system.The final loading test results show that the quality changes of aluminum alloy 3A21,aluminum alloy 5A05,aluminum alloy6063,stainless steel 316L,copper,brass and brazing sheet are all less than ±10 mg/piece;the compatibility test results show that the mass changes of ethylene-propylene-diene monomer rubber(EPDM), fluorine rubber, nitrile rubber, polyethylene resin(PE), polypropylene resin(PP) and polytetrafluoro-ethylene resin(PTFE) are all less than ±5%. This study provides a reference for expanding the application of low-conductivity ethylene glycol coolant in hydrogen fuel cell systems.
2022,44(23): 99-103 收稿日期:2022-06-09
DOI:10.3404/j.issn.1672-7649.2022.23.019
分类号:U677.9
基金项目:河北省中央引导地方科技发展资金项目(216Z4403G)
作者简介:李杰(1981-),男,高级工程师,研究方向为船用冷却液、导热介质等新型换热材料
参考文献:
[1] 昝世超, 钟瑜, 王博, 等. 乙二醇在制冷系统中的腐蚀及防护研究[J]. 制冷与空调, 2012, 12(2):77-80
[2] 朱日彰, 顾国成, 杨文治. 金属防腐蚀手册[M]. 上海:上海科学技术出版社, 1989.
[3] TAKASHIBA T, YAGAWA A, Development of fuel cell coolant[J]. Honda R&D Technology Review, 2009, 21(1):58-62.
[4] PETERSON A M, Numerical simulation of coolant electrolysis in composite plate polymer electrolyte membrane fuel cell stacks[J.] ECS Translate, 2007, 5(1):209-220.
[5] 张梁娟, 赵天亮, 方晓鹏, 等. 低电导率乙二醇冷却液在雷达液冷系统的应用[J]. 现代雷达, 2019, 41(8):65-69
[6] 赵天亮, 张梁娟, 钱吉裕, 等. 3A21、5A05和6063铝合金在低电导率乙二醇冷却液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2017, 29(5):507-514
[7] 范金龙, 龚敏, 侯肖, 等. 3A21铝合金在乙二醇水溶液中的腐蚀行为[J]. 腐蚀与防护, 2014, 35(11):1116-1121
[8] 范金龙, 龚敏, 侯肖, 等. Al/H62黄铜和Al/304不锈钢在乙二醇溶液中的电偶腐蚀[J]. 腐蚀科学与防护技术, 2010, 27(2):147-152
[9] QAED A H A, ESKANDARI H, MADDAHY M H, et al. Corrosion behavior of 6063 aluminum alloy in ethylene glycol-water solution[J]. Journal of Material Science Engineering, 2015, 12:34
[10] ZHANG G A, XU L Y, CHENG Y F. Mechanistic aspects of electro-chemical corrosion of aluminum alloy in ethylene glycol-water solution[J]. Electrochim. Acta., 2008, 53:8245
[11] NIU L, CHENG Y F. Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol-water solution[J]. Journal of Material Science, 2007, 42:8613
[12] LIU Y, CHENG Y F. Characterization of passivity and pitting corrosion of 3003 aluminum alloy in ethylene glycol-water solution[J]. Journal Application Electrochem., 2011, 41:151
[13] 金星, 饶楚仪, 高立新, 等. 铝合金在乙二醇-水模拟冷却液中的腐蚀行为[J]. 材料保护, 2011, 44(9):15
[14] 张传龙, 李会收, 刘占房, 等. 低电导率乙二醇冷却液使用性能研究[J]. 时代汽车, 2021(2):45-47
[15] 贾春燕, 王畅, 刘万发, 等. 浸入式液冷固体激光器用冷却液体的研究[J]. 现代化工, 2015, 35(10):95-99