为实现凝汽器的动态特性分析,采用模块化建模方法,运用Modelica统一物理建模语言以及Mworks仿真平台,根据凝给水系统的工作原理以及能量、质量守恒方程等,开发了热力系统模型库并建立凝汽器的仿真模型。利用所建立的模型,分析凝汽器在汽轮机排汽量以及循环冷却水流量阶跃变化等情况下的动态特性。结果表明,凝汽器内部参数变化情况与实际运行情况相符合,可为船舶动力系统的运行优化提供参考。
In order to realize the dynamic characteristic analysis of condenser, adopts modular modeling method, uses Modelica unified physical modeling language and Mworks simulation platform, and develops the model base of thermal system and establishes the condenser simulation model according to the working principle and energy and mass conservation equation of condensate and water supply system. By using the model, the dynamic characteristics of the condenser are analyzed under the condition of the turbine exhaust volume and the step change of circulating cooling water flow rate. The results show that the variation of the internal parameters of the condenser is consistent with the actual operation, which can provide reference for the optimization of the marine power system.
2022,44(23): 104-108 收稿日期:2021-10-28
DOI:10.3404/j.issn.1672-7649.2022.23.020
分类号:TK267
基金项目:国家自然科学基金资助项目(51609251)
作者简介:曾国庆(1998-),男,硕士研究生,研究方向为舰船动力及热力系统的科学管理
参考文献:
[1] 张磊, 曹跃云, 翁雷, 等. 船用冷凝器真空偏低的动态特性分析及故障诊断[J]. 船海工程, 2017, 46(6):67-71
ZHANG L, CAO Y Y, WENG L, et al. Dynamic characteristic analysis and fault diagnosis of low vacuum of marine condenser[J]. Shipbuilding and Marine Engineering, 2017, 46(6):67-71
[2] 张永生, 马运义, 唐滢, 等. 船用凝汽器的数学模型与动态仿真[J]. 舰船科学技术, 2010, 32(10):101-103
ZHANG Y S, MA Y Y, TANG Y, et al. Mathematical modeland dynamic simulation of marine condenser[J]. Ship Science and Technology, 2010, 32(10):101-103
[3] Vedran Medica-Viola, Branimir Pavković, Vedran Mrzlj-ak. Numerical model for on-condition monitoring of con-denser incoalfired power plants[J]. International Journal of Heat and Mass Transfer, 2018:117
[4] 郭宏恩. 核电汽轮机凝汽器运行参数动态特性仿真研究[J]. 中国测试, 2019, 45(8):55-60
GUO H E. Simulation study on dynamic characteristics of ope-rating parameters of nuclear power turbine condenser[J]. China Test, 2019, 45(8):55-60
[5] 张春秀, 李家富, 蔺杨颖, 等. 核电站凝汽器冷却管防碰摩优化设计[J]. 东方汽轮机, 2021(2):71-73
ZHANG C X, LI J F, LIN Y Y, et al. Optimal design of anti-collision and friction of condenser cooling pipe in nuclear power plant[J]. Dongfang Steam Turbine, 2021(2):71-73
[6] MATHEWS I, MATHEWS E H, et al. A simulation based prediction model for coal-fired power plant condenser maintenance[J]. Applied Thermal Engineering, 2020:174
[7] 陈强, 郭健, 张乃樑, 等. 船体运动对浮动核电站堆内燃料组件结构安全的影响[J]. 兵器装备工程学报, 2019, 40(12):72-77
[8] ZHONG Dawen, MENG Ji'an, QIN Peng, et al. Effect of cooling water flow path on the flow and heat transferin a 660 MW power plant condenser[J]. Science Press, 2019, 28(2).
[9] OLIVEIRA M C, ITEN M. Modelling of industrialwat-er circuits with a customised Modelica library[J]. Applied Thermal Engineering, 2020, 169.
[10] Schölzel Christopher, Blesius Valeria, Ernst Gernot, et al. An understandable, extensible, and reusable implementation of the Hodgkin-Huxley equations using Modelica[J]. Frontiers in Physiology, 2020.
[11] MING L, GUANG M, JIN J P, et al. Application of Modelica/MWorks on modeling, simulation and optimization for electro-hydraulic servo valve system[J]. Theoretical and Applied Mechanics Letters, 2012, 2(6).
[12] 明媚. 基于Modelica的液压起重机起升系统的多场耦合建模与性能仿真[D]. 上海:上海交通大学, 2012.
[13] 朱国情, 程刚, 孙丰瑞. 基于Modelica的船用冷凝系统图形化建模与仿真[C]//第13届中国系统仿真技术及其应用学术年会论文集. Ed. Scientific Research Publishing(SRP), 2011:217-221.