疲劳破坏是船体结构的主要失效模式之一,而点蚀、振动影响下的疲劳损伤问题愈发严重,相关机理尚不明确。通过分别对点蚀、振动影响下的疲劳损伤研究现状进行梳理和综述,可以发现:目前的研究主要集中于腐蚀疲劳和振动疲劳,腐蚀疲劳把点蚀作为电化学腐蚀的结果,振动疲劳直接将振动作为导致结构疲劳失效的载荷形式。因此,本文认为之后的研究重点是针对船体典型结构,把点蚀作为结构损伤形式,把振动作为一种影响因素,进一步明确点蚀、振动对疲劳损伤的影响机理。
Fatigue damage caused by pitting and vibration becomes more and more serious, which is one of the main failure modes of ship structures, while the related mechanism is not clear yet. Through sorting and summarizing the research status of fatigue damage under the influence of pitting corrosion and vibration respectively, it can be found that the current research mainly focuses on corrosion fatigue and vibration fatigue. Corrosion fatigue takes pitting corrosion as the result of electrochemical corrosion, and vibration fatigue directly takes vibration as the load form leading to structural fatigue failure. Therefore, this paper considers that the following research focuses on typical hull structures, taking pitting corrosion as the structural damage form and vibration as an influencing factor, and further clarifying the influence mechanism of pitting corrosion and vibration on fatigue damage.
2022,44(24): 1-5 收稿日期:2021-11-30
DOI:10.3404/j.issn.1672-7649.2022.24.001
分类号:U663.2
基金项目:国家自然科学基金资助项目(52001326;51779261)
作者简介:王金(1990-),男,硕士,工程师,研究方向为船体结构和船舶装置
参考文献:
[1] 吴梵, 滑林. 腐蚀、疲劳损伤下船体结构可靠性研究现状与展望[J]. 中国舰船研究, 2017(5):52-63
[2] PAIK J K, HAM J H, KIM E N. A new plate buckling design formula[J]. Journal of the Society of Naval Architects of Japan, 1992, 1992(171):267-274
[3] SHI W B. In-service assessment of ship structures:effects of general corrosion on ultimate strength[J]. Transactions Society of Naval Architects and Marine Engineers, 1993, 135:77-91
[4] SOARES C G, GARBATOV Y, ZAYED A, et al. Non-linear corrosion model for immersed steel plates accounting for environmental factors[C]//SNAME Maritime Convention. OnePetro, 2005.
[5] TEIXEIRA A P, SOARES C G. Ultimate strength of plates with random fields of corrosion[J]. Structure and Infrastructure Engineering, 2008, 4(5):363-370
[6] TEIXEIRA A P, SOARES C G, WANG G. Probabilistic modelling of the ultimate strength of ship plates with non-uniform corrosion[J]. Journal of Marine Science and Technology, 2013, 18(1):115-132
[7] 朱相荣, 王相润. 金属材料的海洋腐蚀与防护[M]. 北京:国防工业出版社, 1999.
[8] 夏兰廷, 黄桂桥, 张三平. 金属材料的海洋腐蚀与防护[M]. 北京:冶金工业出版社, 2003.
[9] PAIK J K, LEE J M, KO M J. Ultimate compressive strength of plate elements with pit corrosion wastage[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2003, 217(4):185-200
[10] PAIK J K, THAYAMBALLI A K. Ultimate strength of ageing ships[J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2002, 216(1):57-77
[11] OK D, PU Y, INCECIK A. Computation of ultimate strength of locally corroded unstiffened plates under uniaxial compression[J]. Marine Structures, 2007, 20(1-2):100-114
[12] OK D, PU Y, INCECIK A. Artificial neural networks and their application to assessment of ultimate strength of plates with pitting corrosion[J]. Ocean Engineering, 2007, 34(17-18):2222-2230
[13] NAKAI T, MATSUSHITA H, YAMAMOTO N, et al. Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report)[J]. Marine Structures, 2004, 17(5):403-432
[14] NAKAI T, MATSUSHITA H, YAMAMOTO N. Pitting corrosion and its influence on local strength of hull structural members[C]//International Conference on Offshore Mechanics and Arctic Engineering. 2005, 41960:25-35.
[15] YAO Y, YANG Y, HE Z, et al. Experimental study on generalized constitutive model of hull structural plate with multi-parameter pitting corrosion[J]. Ocean Engineering, 2018, 170:407-415
[16] FENG L, HU L, CHEN X, et al. A parametric study on effects of pitting corrosion on stiffened panels' ultimate strength[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12:699-710
[17] ZHANG Y, HUANG Y, MENG F. Ultimate strength of hull structural stiffened plate with pitting corrosion damage under unaxial compression[J]. Marine Structures, 2017, 56:117-136
[18] 张岩, 黄一. 点蚀损伤船体板格单轴压缩极限强度[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(4):429-436
[19] 张岩, 黄一. 点蚀损伤船体板屈曲强度评估的工程应用[J]. 上海交通大学学报, 2016, 50(8):1186-1192
[20] 张岩, 黄一, 刘刚. 点蚀损伤船体结构板的极限剪切屈曲强度研究[J]. 船舶力学, 2013, 17(1):102r-111
[21] EMI H, KUMANO A, BABA N, et al. A study on life assessment of ships and offshore structures Part 1 basic study[J]. Journal of the Society of Naval Architects of Japan, 1991, 1991(169):443-454
[22] EMI H, YUASA M, KUMANO A, et al. A study on life assessment of ships and off-shore structures 2nd report:risk assessment for fatigue failures of hull structures[J]. Journal of the Society of Naval Architects of Japan, 1992, 1992(172):627-635
[23] EMI H, YUASA M, KUMANO A, et al. A study on life assessment of ships and off-shore structures 3rd report:corrosion control and condition evaluation for a long life service of the ship[J]. Journal of the Society of Naval Architects of Japan, 1993, 1993(174):735-744
[24] 江晓俐. 相关腐蚀与疲劳及维修对船体可靠性的影响[J]. 武汉理工大学学报 (交通科学与工程版), 2005, 29(3):363-366
[25] 陈卓人, 马巧红. 船体结构钢腐蚀疲劳裂纹扩展行为研究[J]. 实验室研究与探索, 2007, 26(10):273-274
[26] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003.
[27] CRANDALL S H. Random vibration[M]. New York:Technology Press of MIT, 1958.
[28] CRANDALL S H, MARK W D. Random vibration in mechanical systems[M]. New York:Academic Press, 1963.
[29] WHALEY P W, CHEN P S, SMITH G M. Continuous measurement of material damping during fatigue tests[J]. Experimental mechanics, 1984, 24(4):342-348
[30] SANLITURK K Y, IMREGUN M. Fatigue life prediction using frequency response function[J]. Journal of Vibration and Acoustics, 1992, 114(7):381-386
[31] DENTSORAS A J, KOUVARITAKIS E P. Effects of vibration frequency on fatigue crack propagation of a polymer at resonance[J]. Engineering fracture mechanics, 1995, 50(4):467-473
[32] COLAKOGLU M. Measurement and analysis of damping factor in engineering materials to assess fatigue damage[M]. Washington University in St. Louis, 2001.
[33] RICE S O. Mathematical analysis of random noise[J]. The Bell System Technical Journal, 1944, 23(3):282-332
[34] LÜ P, ZHAO B, YAN J. Efficient algorithm for fatigue life calculations under broad band loading based on peak approximation[J]. Journal of Engineering Mechanics, 1998, 124(2):233-236
[35] CHOW C L, LI D L. An analytical solution for fast fatigue assessment under wide-band random loading[J]. International journal of fatigue, 1991, 13(5):395-404
[36] KAM J C P. Recent development in the fast corrosion fatigue analysis of offshore structures subject to random wave loading[J]. International Journal of Fatigue, 1990, 12(6):458-468
[37] 吕澎民, 赵邦华, 严隽耄. 宽带随机谱下一种实用的等效应力计算模型[J]. 甘肃工业大学学报, 1996, 22(3):75-82
[38] 屠海明, 邓洪洲. 桅杆结构风振疲劳分析[J]. 四川建筑科学研究, 2001, 27(2):6-8
[39] FRENDAHL M, RYCHLIK I. Rainflow analysis:Markov method[J]. International journal of fatigue, 1993, 15(4):265-272
[40] BENASCIUTTI D, TOVO R. Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes[J]. Probabilistic Engineering Mechanics, 2006, 21(4):287-299
[41] BISHOP N W M. Vibration fatigue analysis in the finite element environment[J]. XVI Encuentro Del Grupo Español De Fractura, Spain, 1999.
[42] HANNA Z A. Vibration fatigue assessment finite element analysis and test correlation[D]. University of Windsor, 2005.
[43] LIU X, SOOKLAL V K, VERGES M A, et al. Experimental study and life prediction on high cycle vibration fatigue in BGA packages[J]. Microelectronics Reliability, 2006, 46(7):1128-1138
[44] KIM Y B, NOGUCHI H, AMAGAI M. Vibration fatigue reliability of BGA-IC package with Pb-free solder and Pb-Sn solder[J]. Microelectronics Reliability, 2006, 46(2-4):459-466
[45] WU M L, BARKER D. Rapid assessment of BGA fatigue life under vibration loading[J]. IEEE Transactions on Advanced Packaging, 2009, 33(1):88-96
[46] SELVERIAN J H. Dynamic fatigue of alumina[J]. Journal of Materials Science, 2005, 40(2):495-497
[47] 焦群英, 王书茂. 用于结构共振疲劳寿命估计的应变模态分析[J]. 机械工程学报, 1996, 32(3):6
[48] 安刚, 龚鑫茂. 随机振动环境下结构的疲劳失效分析[J]. 机械科学与技术, 2000(z1):3
[49] 姚军, 姚起杭. 结构随机振动响应的工程简化分析[J]. 应用力学学报, 2002, 19(1):3
[50] 孙伟. 结构振动疲劳寿命估算方法研究[D]. 南京:南京航空航天大学, 2005.
[51] 张林波, 柳杨, 黄鹏程, 等. 有限元疲劳分析法在汽车工程中的应用[J]. 计算机辅助工程, 2006, 15(S1):195-198
[52] 王明珠, 姚卫星, 孙伟. 结构随机振动疲劳寿命估算的样本法[J]. 中国机械工程, 2008, 19(8):4
[53] 曹明红, 齐丕骞, 葛森. 涉及双模态应力响应谱的振动疲劳寿命估算方法[J]. 结构强度研究, 2007(1):6
[54] 张淼, 邹希, 孟庆春, 等. 谐振载荷作用下工程结构振动疲劳寿命预估的损伤力学-有限元法[J]. 计算力学学报, 2010, 27(5):5
[55] 刘文光, 陈国平, 贺红林, 等. 结构振动疲劳研究综述[J]. 工程设计学报, 2012, 19(1):1-8
[56] 刘文光, 陈国平. 含裂纹悬臂梁的振动与疲劳耦合分析[J]. 振动与冲击, 2011(5):140-144
[57] 刘文光. 结构共振疲劳试验及裂纹构件的振动疲劳耦合分析[D]. 南京:南京航空航天大学, 2010.
[58] 刘文光, 陈国平. 呼吸式裂纹梁的振动疲劳裂纹扩展耦合分析[J]. 中国机械工程, 2010, 21(23):2798-2802
[59] 刘文光, 王耀斌. 基于模态频率的缺口梁疲劳裂纹扩展寿命预测[J]. 振动与冲击, 2020, 39(1):102-108
[60] 汪雪良, 顾学康, 胡嘉骏. 船舶波激振动研究进展[J]. 船舶力学, 2013, 17(7):830-844
[61] DRUMMEN I, STORHAUG G, MOAN T. Experimental and numerical investigation of fatigue damage due to wave-induced vibrations in a containership in head seas[J]. Journal of Marine Science and Technology, 2008, 13(4):428-445
[62] SLOCUM S, TROESCH A. Non-linear ship springing experiments[R]. 1983.
[63] JENSEN J J. Stochastic procedures for extreme wave load predictions-wave bending moment in ships[J]. Marine Structures, 2009, 22(2):194-208