为研究水中隔振特性,基于FEM/AML技术并采用“双层壳方法”,建立内壳充液且舷间由弹簧连接的有限长双层圆柱壳模型。通过与实体网格法进行对比,验证了“双层壳方法”的可靠性。研究水介质和弹簧对隔振特性的影响并提出一种水中隔振装置,结果表明:舱内水介质和舷外水介质会降低外壳的固有频率;舷外水介质降低了外壳的振动幅值且在低频会增大壳体的辐射声功率;舷间水介质发生“振动短路”,降低了隔振器的隔振性能;设计的气囊与隔振器相结合的水中隔振装置可有效提升隔振性能,0~500 Hz范围内的均方振速总级可减小3 dB,辐射声功率总级可减小10 dB。
In order to study the vibration isolation characteristics in water, a finite length double-layer cylindrical shell model was established based on FEM/AML technology and double shell method, in which the inner shell is filled with liquid and the inner shell and the outter shell is connected by springs. Compared with the solid mesh method, the reliability of the "double shell method" is verified. The influence of water medium and spring on vibration isolation characteristics is studied, and an underwater vibration isolation device is proposed. The results show that:the natural frequency of the outter shell will be reduced by cabin water medium and outboard water medium.The vibration amplitude of the outter shell will be reduced by the outboard water medium, and the radiated sound power of the shell will be increased at low frequency by the outboard water medium.The vibration short circuit of water medium between shells reduces the vibration isolation performance of vibration isolator.The vibration isolation performance of the underwater vibration isolation device with the combination of air bag and vibration isolator can be effectively improved. The total level of mean square velocity in the range of 0~500 Hz can be reduced by 3 dB, and the total level of radiated sound power can be reduced by 10 dB.
2022,44(24): 6-10 收稿日期:2021-09-17
DOI:10.3404/j.issn.1672-7649.2022.24.002
分类号:TP319.56
基金项目:基础加强计划重点基础研究项目(2020-JCJQ-ZD-222)
作者简介:于安斌(1993-),男,博士研究生,研究方向为舰船振动噪声控制
参考文献:
[1] 金著, 何琳, 赵应龙. 寿命周期构型变化类橡胶减振器使用寿命评估[J]. 振动测试与诊断, 2018, 38(2):248-253
[2] CHENG L, LI Y Y, GAO J X. Energy transmission in a mechanically-linked double-wall structure coupled to an acoustic enclosure[J]. Journal Acoustic Society of America, 2005, 117(5):2742-2751
[3] LEGAULT, N. ATALLA. Sound transmission through a double panel structure periodically coupled with vibration insulators[J]. Journal of Sound and Vibration, 2010, 329(15):3082-3100
[4] 夏齐强, 陈志坚, 林超友. 含黏弹性夹层托板的减振降噪性能分析[J]. 华中科技大学学报(自然科学版), 2014(6):52-57
[5] 王世彦, 俞孟萨. 舷间液舱模型声振耦合特性及声辐射控制[J]. 船舶力学, 2019, 23(1):96-109
[6] 李英. 大口径水消声器的设计与实验研究[D]. 哈尔滨:哈尔滨工程大学, 2005.
[7] 黄信男. 气囊式水消声器性能仿真与实验研究[D]. 哈尔滨:哈尔滨工程大学, 2008.
[8] 尹佳玮. 环状膜水管路消声器研究[D]. 哈尔滨:哈尔滨工程大学, 2015.
[9] 陈杰. 皮囊式管道消振器吸收压力冲击特性研究[D]. 武汉:华中科技大学, 2019.
[10] 段嘉希, 周其斗, 郑晗. 敷设气囊的充水圆柱壳的声辐射特性[J]. 国防科技大学学报, 2016, 38(2):183-190
[11] 段嘉希, 周其斗, 纪刚, 等. 采用钢丝加强的气囊式声学覆盖层的减振降噪效果[J]. 海军工程大学学报, 2016, 28(6):107-112
[12] 段嘉希, 周其斗, 方斌. 外层蒙皮加强充水气囊圆柱壳的声辐射[J]. 舰船科学技术, 2017, 39(11):62-65
[13] 冯娜, 水下复杂结构的声振预报方法与特性分析[D]. 哈尔滨:哈尔滨工程大学, 2013.