海工升降系统是海上石油开采平台、自升自航式工程船等大型海工装备的关键模块,是以液压控制系统驱动桩腿、平台运动的综合复杂系统,涉及运动学、多体系统学、液压控制等。为研究升降系统特性,基于某型风电安装船机械结构和运动特性,建立双动环梁液压插销式升降系统模型,并运用Adams软件对升降系统的载荷特性进行动力学仿真分析。仿真结果表明,双动环梁升降装置提升桩腿运动轨迹曲线变化平稳、稳定性相对较好,但是支撑状态下,对桩腿和环梁的载荷分配有较大影响。通过对运动学和动力学研究,可以为平台控制提供理论依据。
Marine lifting system is the key module of large-scale marine equipment such as offshore oil exploitation platform and jack up and self-propelled engineering ship. It is a comprehensive complex system that drives the movement of pile legs and platform with hydraulic control system, involving kinematics, multi-body systematics, hydraulic control and so on. In order to study the characteristics of the lifting system, based on the mechanical structure and motion characteristics of a wind power installation ship, a double acting ring beam hydraulic pin lifting system model is established, and the dynamic simulation analysis of the load characteristics of the lifting system is carried out by using Adams. The simulation results show that the trajectory curve of the pile leg lifted by the double acting ring beam lifting device changes smoothly and has relatively good stability. However, in the supported state, it has a great influence on the load distribution of pile leg and ring beam. The research on kinematics and dynamics can provide a theoretical basis for the research of platform control.
2022,44(24): 39-44 收稿日期:2021-11-16
DOI:10.3404/j.issn.1672-7649.2022.24.009
分类号:U664
基金项目:国家重点研发项目(2019YFB2005304)
作者简介:张磊(1973-),副教授,研究方向为海工装备设计与分析、机电装备开发与测控
参考文献:
[1] WANG Z X, JIANG C W, AI Q, et al. The key technology of offshore wind farm and its new development in China[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1):216-222
[2] PERVEEN R, KISHOR N, MOHANTY S R. Off-shore wind farm development:present status and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 29:780-792
[3] 张海亚, 郑晨. 海上风电安装船的发展趋势研究[J]. 船舶工程, 2016, 38(1):1-7
ZHANG Hai-ya, ZHENG Chen. Developing trend analysis of wind turbine installation vessel[J]. Ship Engineering, 2016, 38(1):1-7
[4] 郝金凤, 强兆新, 石俊令. 风电安装船功能与经济性分析[J]. 舰船科学技术, 2014, 36(5):49-54
HAO Jin-feng, QIANG Zhao-xin, SHI Jun-ling. Functionality and economic analysis of wind turbine installation vessel[J]. Ship Science and Technology, 2014, 36(5):49-54
[5] 孙东昌, 潘斌. 海洋自升式移动平台设计与研究[M]. 上海:上海交通大学出版社, 2008.
[6] 甄义省, 邬卡佳, 童波. 自航自升式风电安装船总体设计[J]. 船舶工程, 2019, 41(6):18-23
ZHEN Yi-xing, WU Ka-jia, TONG Bo. General design for self-elevating and self-propelled wind power installation vessel[J]. Ship Engineering, 2019, 41(6):18-23
[7] 黄维学, 刘放. 自升式海上钻井平台升降系统技术特点分析[J]. 设计与计算, 2011(2):1-3
HUANG Wei-xue, LIU Fang. Technical characteristics analysis of jacking system of offshore jack-up drilling platform[J]. Cfhi Technology, 2011(2):1-3
[8] 邓国辉, 张磊. 风电安装平台升降系统选型浅析[J]. 广东造船, 2019, 38(2):74-76
DENG Guohui, ZHANG Lei. Selection of lifting system for wind power installation platform[J]. Guangdong Shipbuilding, 2019, 38(2):74-76
[9] 刘放. 自升式海洋钻井平台液压升降系统[J]. 设计与计算, 2016(6):35-51
LIU Fang. Hydraulic jack-up system of self-elevating off-shore drilling platforms[J]. Cfhi Technology, 2016(6):35-51
[10] 王越, 杨亮. 自升式钻井平台简论[J]. 船舶设计通讯, 2011(128):73-80
WANG Yue, YANG Liang. Brief introduction on jack up drilling units[J]. Journal of Ship Design, 2011(128):73-80
[11] 胡佳锐. 自升式平台结构可靠性研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
[12] QI J Y, REN L N, NING S P, et al. Research on multi-legs synchronous control of the self-elevating offshore platform[J]. Automation & Instrumentation, 2014, 29(11):41-45
[13] HE Bin, CAO Jin-tao, HE Xiao-lin, et al. Lifting platform in jack-up offshore platform based on virtual prototyping[J]. Applied Mechanics and Materials, 2012(198-199):154-157
[14] 金晔. 自升式风电安装船桩腿强度分析和优化[J]. 舰船科学技术, 2021, 43(2):131-135
JIN Ye. Strength analysis and optimization of the spud leg of jack-up wind power installation ship[J]. Ship Science and Technology, 2021, 43(2):131-135
[15] 李永正, 孙晓鹏, 谢仁杰, 等. 多种自升式海洋平台桩靴上拔过程仿真分析[J]. 舰船科学技术, 2018, 40(8):66-70
LI Yong-zheng, SUN Xiao-peng, XIE Ren-jie, et al. Simulation of the pull-up process of several self-elevating offshore platform pile boots[J]. Ship Science and Technology, 2018, 40(8):66-70