利用水下无人集群执行协同作战任务,是未来海战场的一种新型作战样式,而优化部署技术是集群组网运用效能发挥的关键。针对水下无人集群协同探测需求,本文组合使用和声搜索算法(Harmony Search,HS)和粒子群优化算法(Particle Swarm Optimization,PSO),自动解算集群成员阵位,实现水下无人集群对任务区域的最大化有效探测覆盖。建立多约束条件下的有效探测覆盖率综合评价方法,对优化部署效果进行分析评估。仿真结果表明:HS-PSO算法具有相对稳定的全局寻优能力,与人工部署方案相比,经HS-PSO算法优化集群协同探测效能得到明显提升,可为水下无人集群智能协同任务规划提供有力支撑。
Using underwater unmanned swarm to carry out cooperative mission is a new operational style in the future naval battle field. The efficiency of cluster networking mainly depends on optimal deployment techniques. In order to meet cooperative detecting requirements of underwater unmanned swarm, in this paper, the combination of harmony search (HS) and particle swarm optimization (PSO) algorithm has been used to automatically calculate the optimal parameters such as swarm member’s location. It can maximize the effective detection coverage of the task area. The comprehensive evaluation algorithm of effective detection coverage under multiple constraints is established to analyze and evaluate the optimal deployment effect. The simulation result shows that the algorithm has an relatively stable global optimization ability, and the efficiency of swarm collaborative detection optimized by HS-PSO algorithm is significantly improved, which can provide strong support for intelligent cooperative task planning of underwater unmanned swarm.
2022,44(24): 50-55 收稿日期:2022-07-25
DOI:10.3404/j.issn.1672-7649.2022.24.011
分类号:E317
作者简介:崔化超(1986-),男,高级工程师,研究方向水下情报处理与作战辅助决策技术
参考文献:
[1] 生雪莉, 李鹏飞, 郭龙祥, 等. 基于单平台探测概率模型的水下无人集群部署规划算法[J]. 水下无人系统学报, 2019, 27(2):194-199
[2] HAN Y, ZHANG J, SUN D. Error Control and Adjustment Method for Underwater Wireless Sensor Network Localization[J]. Applied Acoustics, 2018, 130:293-299
[3] WANG S Q, SUN D J, ZHANG Y W. An Efficient Intra-Cluster MAC Protocol in Underwater Acoustic Sensor Ne t-works[J]. Applied Mechanics & Materials, 2014, 651-653:1790-1797.
[4] 惠俊英, 生雪莉. 水下声信道, 第二版[M]. 北京:国防工业出版社, 1992:37-40.
[5] 崔化超, 王益乐, 俞剑. 被动拖曳声呐模拟器关键技术[J]. 指挥信息系统与技术. 2018, 9(1):28-32.
CUI Huachao, WANG Yile, YU Jian. Key Technology of Passive Towed Sonar Simulator[J]. Command Information System and Technology. 2018, 9(1):28-32.
[6] 刘伯胜, 雷家煜. 水声学原理(第二版)[M]. 哈尔滨工程大学出版社, 2009:23-30.
[7] 佟盛, 李大辉, 戴学丰. 水下无人集群优化部署算法设计与分析[J]. 舰船科学技术. 2019, 41(11):104-107.
[8] 齐智敏, 黄谦, 张海林. 智能无人集群任务规划系统架构设计[J]. 军事运筹与系统工程. 2019, 33(3):26-30.
[9] 胡桥, 刘钰, 赵振轶, 等. 水下无人集群仿生人工侧线探测技术研究进展[J]. 水下无人系统学报. 2019, 27(2):114-122.
[10] 李宁, 陈晖. 基于灰色层次分析法的作战指挥效能评估[J]. 兵器装备工程学报. 2017, 38(5):22-26.
[11] KIM J H, GEEM Z W, KIM E S. Parameter estimation of the nonlinear Muskingum model using harmony search[J]. J Am Water Resour Assoc, 2001, 37(5):1131-1138
[12] GEEM Z W. Optimal cost design of water distribution networks using harmony search[J]. Eng Optimiz, 2006, 38(3):259-280
[13] KANG S L, GEEM Z W. A new structural optimization method based on the harmony search algorithm[J]. Comput Struct, 2004, 82(9/10):781-798
[14] 许书诚, 王琪, 刘贤敏. 基于分合粒子群算法的多无人机任务重分配[J]. 火力与指挥控制. 2012, 37(4):188-191.
[15] 施蓉花, 吴庆宪, 姜长生. 无人机协同攻击的混合粒子群算法[J]. 火力与指挥控制. 2009, 34(9):10-13.
[16] 刘科, 周继强, 郭小和. 基于改进粒子群算法的无人机路径规划研究[J]. 中北大学学报(自然科学版). 2013, 34(4):441-447.
[17] 高立群, 葛延峰, 孔芝, 等. 自适应和声粒子群搜索算法[J]. 控制与决策. 2010, 25(7):1101-1104.
[18] 孙欣欣, 王兴伟, 黄敏. 一种基于自适应和声粒子群搜索的可信QoS路由机制[J]. 系统仿真学报. 2016, 28(3):741-748.